数据结构基础算法之查找算法

本文详细介绍了四种基础查找算法:简单线性查找、二分查找、插值查找和斐波那契查找。线性查找通过遍历数组实现,适合小规模数据;二分查找适用于有序数组,查找效率高;插值查找在有序数组中,根据目标值与数组端点的关系调整查找点;斐波那契查找利用黄金分割点优化查找过程,提高查找效率。代码示例展示了每种算法的实现方式。
摘要由CSDN通过智能技术生成

基础查找算法

1.简单线性查找

基本思想:遍历数据进行比对查找
实现代码:

	public static void main(String[] args) {
		int a[] = {1,23,42,22,21,89}; 
		int result = seqSearch(a,23);
		if(result == -1) {
			System.out.println("没有查找到");
		}else {
			System.out.println("有这个数");
		}
	}
	
	private static int seqSearch(int[] a,int val) {
		for (int i = 0; i < a.length; i++) {
			if(a[i] == val) {
				return i;
			}
		}
		return -1;
	}

2.二分查找

基本思想:首先确定一些有序数值的中间值,然后让需要查找的数findVal和中间值进行比较,如果大于中间值,则向中间数的右边递归查找,小于则向左递归查找,等于则找到
实现代码:

	public static void main(String[] args) {
		int[] a = new int[] { 1, 23, 43, 56, 234, 1000, 1000, 1000, 1231 };

		int index = binarySelect(a, 0, a.length - 1, 1000);
		System.out.println("index=" + index);

		ArrayList<Integer> indexs = new ArrayList<Integer>();
		indexs = binarySelect1(a, 0, a.length - 1, 1000);
		System.out.println(indexs);

	}

	// 二分查找单个数
	private static int binarySelect(int[] a, int left, int right, int value) {
		if (left > right) {
			return -1;
		}

		int mid = (left + right) / 2;
		int midVal = a[mid];

		if (value > midVal) {
			return binarySelect(a, mid + 1, right, value);
		} else if (value < midVal) {
			return binarySelect(a, left, mid - 1, value);
		} else {
			return mid;
		}
	}

	// 二分查找查找所有重复的数
	private static ArrayList<Integer> binarySelect1(int[] a, int left, int right, int value) {
		if (left > right) {
			return new ArrayList<Integer>();
		}

		int mid = (left + right) / 2;
		int midVal = a[mid];

		if (value > midVal) {
			return binarySelect1(a, mid + 1, right, value);
		} else if (value < midVal) {
			return binarySelect1(a, left, mid - 1, value);
		} else {
			ArrayList<Integer> list = new ArrayList<Integer>();
			// 向左扫描寻找和查找值相等的数
			int temp = mid - 1;
			while (true) {
				if (temp < 0 || a[temp] != value) {
					break;
				}
				list.add(temp);
				temp -= 1;
			}
			list.add(mid);

			// 向右扫描看是否有和查找值相等的值
			temp = mid + 1;
			while (true) {
				if (temp > a.length - 1 || a[temp] != value) {
					break;
				}
				list.add(temp);
				temp += 1;
			}
			return list;
		}
	}

3.插值查找

基本思想:二分查找升级,每次从自适应中值(中值:left + (right - left) * (value - a[left]) / (a[right] - a[left]))开始查找
实现代码:

	public static void main(String[] args) {
		// 思想:二分查找升级,每次从自适应中值开始查找
		// 中值:left + (right - left) * (value - a[left]) / (a[right] - a[left])
		int[] a = new int[100];
		for (int i = 0; i < 100; i++) {
			a[i] = i + 1;
		}
		int index = insertSelect(a, 0, a.length - 1, 1);
		System.out.println(index + "----" + a[index]);
	}

	private static int insertSelect(int[] a, int left, int right, int value) {
		if (left > right || value < a[0] || value > a[a.length - 1]) {
			return -1;
		}
		
		int mid = left + (right - left) * (value - a[left]) / (a[right] - a[left]);
		int midVal = a[mid];
		
		if (midVal > value) {// 向左查询
			return insertSelect(a, left, mid - 1, value);
		} else if (midVal < value) {// 向右查询
			return insertSelect(a, mid + 1, right, value);
		} else {
			return mid;
		}
	}

4.斐波那锲查找(黄金分割点)

基本思想:黄金分割查找算法,中间节点改变:mid = F(k-1)-1
实现代码:

	public static int maxSize = 20;

	public static void main(String[] args) {
		// 黄金分割查找算法
		// 思想:中间节点改变:mid = F(k-1)-1

		int[] a = new int[] { 1, 23, 123, 413, 1233, 3411 };

		System.out.println("index----/" + fibSearch(a, 12));
	}

	// 非递归的方法得到一个斐波那锲数列
	public static int[] fib() {
		int[] f = new int[maxSize];
		f[0] = 1;
		f[1] = 1;
		for (int i = 2; i < maxSize; i++) {
			f[i] = f[i - 1] + f[i - 2];
		}
		return f;
	}

	public static int fibSearch(int[] a, int key) {
		int low = 0;
		int high = a.length - 1;
		int k = 0;
		int mid = 0;
		int f[] = fib();// 或得斐波那锲数列
		
		// 获得斐波那锲数值下标
		while (high > f[k] - 1) {
			k++;
		}
		
		// 因为f[k]值可能大于a的长度,因此构造一个新数组
		// 不足部分由0补充
		int[] temp = Arrays.copyOf(a, f[k]);

		// 实际上需求使用a数组最后的填充temp
		// 举例
		// temp ={1,2,34,231,0,0,0} ---> {1,2,34,231,231,231,231}
		for (int i = high + 1; i < temp.length; i++) {
			temp[i] = a[high];
		}

		while (low <= high) {
			mid = low + f[k - 1] - 1;
			if (key < temp[mid]) {
				high = mid - 1;
				// 全部元素 = 前面元素 + 后边元素
				// f[k] = f[k-1] +f[k-2]
				// 因为前面有f[k-1]个元素,所以可以继续拆分为f[k-1] = f[k-2] + f[k-3]
				k--;
			} else if (key > temp[mid]) {
				low = mid + 1;
				// 全部元素 = 前面元素 + 后边元素
				// f[k] = f[k-1] +f[k-2]
				// 因为前面有f[k-1]个元素,所以可以继续拆分为f[k-1] = f[k-3] + f[k-4]
				// 即下次循环mid = f[k-1-2] -1
				k -= 2;
			} else {
				if (mid <= high) {
					return mid;
				} else {
					return high;
				}
			}
		}
		return -1;
	}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值