R语言和Python的数据挖掘学习笔记

本文详述了作者在数据挖掘中使用R语言和Python的心得体会,涵盖数据预处理如归一化、正则化和标准化,分享了Python在Kaggle信用卡数据分析、DBSCAN聚类以及随机森林调参的应用,同时提及了集成学习的评价指标。
摘要由CSDN通过智能技术生成

提示:本文章记录自己学习数据挖掘的心得和经验


前言

我们通常利用R语言和Python来进行数据挖掘和数据的分析。


数据分析的一般步骤:
1.导入数据和相关的库
2.查看数据的总体情况
3.查看数据缺失值,空值,重复值
4.归一化 (Normalization),标准化(Standardization),正则化
4.选择合适的数据分析方法进行分析

一、数据预处理

1.python数据预处理,归一化,正则化,标准化

链接: https://blog.csdn.net/ARPOSPF/article/details/80787353.

链接:https://www.cnblogs.com/zhanglianbo/p/5690974.html

二、Python数据挖掘的经验

1.Kaggle 信用卡数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值