0-求解组合优化问题的具有递归特征的无监督图神经网络(arXiv 2024)(未完)


ABSTRACT

近年来,图神经网络(GNNs)作为一种有前途的方法,已经引起了相当大的关注,用于解决组合优化问题。我们介绍了一种名为QRF-GNN的新算法,该算法利用GNNs的力量来高效解决具有二次无约束二进制优化(QUBO)表述的组合问题。它依赖于无监督学习,并最小化从QUBO松弛导出的损失函数。该架构的关键组成部分是中间GNN预测的重复使用、并行卷积层以及将人工节点特征组合作为输入。算法的性能已经在最大割和图着色问题的基准数据集上进行了评估。实验结果表明,QRF-GNN超越了现有的基于图神经网络的方法,并且与最先进的传统启发式方法相当。

  • 介绍了一种名为QRF-GNN的新型算法,有效解决具有二次无约束二进制优化(QUBO)表述的组合问题。依赖无监督学习,最小化QUBO松弛导出的损失函数。
  • 该架构的关键组成部分是中间GNN预测的递归使用、并行卷积层以及将人工节点特征作为输入的组合。

1 Introduction

组合优化(CO)是计算机科学中一个著名的主题,它连接了运筹学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值