文章目录

ABSTRACT
近年来,图神经网络(GNNs)作为一种有前途的方法,已经引起了相当大的关注,用于解决组合优化问题。我们介绍了一种名为QRF-GNN的新算法,该算法利用GNNs的力量来高效解决具有二次无约束二进制优化(QUBO)表述的组合问题。它依赖于无监督学习,并最小化从QUBO松弛导出的损失函数。该架构的关键组成部分是中间GNN预测的重复使用、并行卷积层以及将人工节点特征组合作为输入。算法的性能已经在最大割和图着色问题的基准数据集上进行了评估。实验结果表明,QRF-GNN超越了现有的基于图神经网络的方法,并且与最先进的传统启发式方法相当。
- 介绍了一种名为QRF-GNN的新型算法,有效解决具有二次无约束二进制优化(QUBO)表述的组合问题。依赖无监督学习,最小化QUBO松弛导出的损失函数。
- 该架构的关键组成部分是中间GNN预测的递归使用、并行卷积层以及将人工节点特征作为输入的组合。
1 Introduction
组合优化(CO)是计算机科学中一个著名的主题,它连接了运筹学