DIMES:组合优化问题的可微Meta求解器(NeurIPS-2022)(未完)


文章目录

Abstract

最近,深度强化学习(DRL)模型在解决NP难度的组合优化(CO)问题上显示出了良好的效果。然而,大多数DRL求解器仅能扩展到几百个节点的图形组合优化问题,例如旅行商问题(TSP)。本文通过提出一种新方法,即DIMES,来解决大规模组合优化的可扩展性挑战。与以往受限于代价高昂的自回归解码或离散解的迭代优化的DRL方法不同,DIMES引入了一个紧凑的连续空间,用于参数化候选解的底层分布。这样的连续空间允许通过大规模并行采样进行稳定的基于REINFORCE的训练和微调。我们进一步提出了一种元学习框架,以便在微调阶段有效初始化模型参数。大量实验表明,DIMES在大型基准数据集上优于最近的基于DRL的方法,尤其是在旅行商问题和最大独立集问题上。

1 Introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值