Abstract
最近,深度强化学习(DRL)模型在解决NP难度的组合优化(CO)问题上显示出了良好的效果。然而,大多数DRL求解器仅能扩展到几百个节点的图形组合优化问题,例如旅行商问题(TSP)。本文通过提出一种新方法,即DIMES,来解决大规模组合优化的可扩展性挑战。与以往受限于代价高昂的自回归解码或离散解的迭代优化的DRL方法不同,DIMES引入了一个紧凑的连续空间,用于参数化候选解的底层分布。这样的连续空间允许通过大规模并行采样进行稳定的基于REINFORCE的训练和微调。我们进一步提出了一种元学习框架,以便在微调阶段有效初始化模型参数。大量实验表明,DIMES在大型基准数据集上优于最近的基于DRL的方法,尤其是在旅行商问题和最大独立集问题上。