给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。
你能求出数列中总共有多少个 K 倍区间吗?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 K 倍区间的数目。
数据范围
1≤N,K≤100000,
1≤Ai≤100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
思路:
给与n , k ,然后给与 n 个数,让我们在 n 的序列中找出一段值 的和,使这个值为 k 的倍数,找出有多少个子序列符合这个要求。
首先我们想到前缀和,求出前缀和,然后利用 s[ r ] - s[ l -1 ] ,判断这个值是否为k 的倍数(利用取余即可),但是需要双重 for 循环,时间复杂度哦 1e10,明显超时。
所以我们想到一重 for 循环, 我们可以发现其中的规律,我们发现当后面的 s [ r ] 取余如果为1,当 s[ l ] 取余也为 1 ,那么他们之间的值的和 为 k 的倍数 [ (n * k + 1) - (m * k + 1) ] = (n - m) * k。所以我们利用这一特性进行计算。
答案:
#include <iostream>
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f3f3f3f3f
#define rep(i,a,b) for(auto i=a;i<=b;++i)
#define bep(i,a,b) for(auto i=a;i>=b;--i)
#define lowbit(x) x&(-x)
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define PI acos(-1)
#define pb push_back
#define eps 1e-6
const int mod = 1e9 + 7;
const int N = 1e5 + 10;
const int M = 111;
using namespace std;
ll dp[N];
ll mp[N];
void solve(){
ll n,k;
cin>>n>>k;
rep(i,1,n){
cin>>dp[i];
dp[i]+=dp[i-1]; ///计算前缀和
}
mp[0]=1;
ll ans=0;
rep(i,1,n){
ans+=mp[dp[i]%k]; ///拿出当前余数相同时,当前值之前余数的个数
mp[dp[i]%k]++; ///当前余数值++
}
cout<<ans<<endl;
}
int main()
{
solve();
return 0;
}