2020.4.21大一练习:DP动态规划-入门练习


一、关于动态规划

1.它用来求解哪些类型的问题?

👉计数型、最值型、存在性型

2.解题思路

在这里插入图片描述


二、入门练习:

A.LintCode-P669-换硬币

这是一道最值型DP,求符合条件的最小值。

(输入方式我改了一下,与领英上不同
主要思路:
在这里插入图片描述

#include <bits/stdc++.h>
using namespace std;
const int MAX_VALUE = 10000000;
int main()
{
    int n, price;
    cin >> n >> price;         //输入硬币种数n,价格price
    int coin[n], f[price + 1]; //f为转移方程
    for (int i = 0; i < n; i++)
        cin >> coin[i];
    f[0] = 0;                        //初始条件
    for (int i = 1; i <= price; i++) //从小到大进行计算
    {
        f[i] = MAX_VALUE; //先赋一个比较大的值
        for (int j = 0; j < n; j++)
        {
            if (i >= coin[j] && f[i - coin[j]] != MAX_VALUE) //防止数组下标越界和判定出错
                f[i] = min(f[i - coin[j]] + 1, f[i]);        //转移方程
        }
    }
    if (f[price] == MAX_VALUE)
    	f[price] = -1;
    cout << f[price] << endl;
    //system("pause");
    return 0;
}

B.LintCode-P114-不同的路径

这是计数型问题。

据题意,机器人只能向右或者向下移动;设n行m列,则终点是(n-1,m-1)
根据(一)中所说,看最后一步确定状态:要走到终点,只有两个点可以:
(n-1,m-2)、(n-2,m-1)
于是问题变成了:走到上述两点有多少种方式?
这就是子问题,所以我们可以确定转移方程f[i][j]代表的是点的坐标。
设走到(n-1,m-2)有X种,走到(n-2,m-1)有Y种,根据加法原理,答案即为X+Y。

可以看出终点位置的答案为:终点位置上面的值+终点位置左边的值
所以计算顺序我们选择:行→从上往下,列→从左往右 计算。

又可以看出,当路径为第一行或者第一列时,均只有一种走法
代码如下:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n, m;
    cin >> n >> m;
    int f[n][m];
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++)
        {
            if (i == 0 || j == 0)
                f[i][j] = 1;
            else
                f[i][j] = f[i - 1][j] + f[i][j - 1];
        }
    printf("%d\n", f[n - 1][m - 1]);
    //system("pause");
    return 0;
}

C.LintCode-P116-跳跃游戏

这是存在性型问题,问你可不可以、行不行。

①首先确定状态:
在这里插入图片描述
②发现子问题:
在这里插入图片描述
③写出转移方程
在这里插入图片描述
在这里插入图片描述
④确定计算顺序:
在这里插入图片描述
代码如下(输入方式有改动):

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;//跳台个数
    cin >> n;
    int A[n];//每个台对应的最大跳跃距离
    for (int k = 0; k < n; k++)
        cin >> A[k];
    bool f[n];//转移方程
    f[0] = 1;
    int j;
    for (j = 1; j < n; j++)
    {
        f[j] = 0;//先假设跳不到j,若符合条件再改为1
        for (int i = 0; i < j; i++)
        {
            if (f[i] && i + A[i] >= j)
            {
                f[j] = 1;
                break;
            }
        }
    }
    if (f[j] == 1)
        cout << "true" << endl;
    else
        cout << "false" << endl;
    //system("pause");
    return 0;
}

D.洛谷:P1057-传球游戏

截图摘自洛谷: Arkhails_Dragon
摘自洛谷: Arkhails_Dragon
这里存的应该是每次传球时各位置上的人接到球的可能性。

#include <bits/stdc++.h>
using namespace std;
int n, m;
int f[31][31];
int main()
{
    cin >> n >> m;
    f[0][1] = 1;
    for (int i = 1; i <= m; i++)
        for (int j = 1; j <= n; j++)
        {
            if (j == 1)
                f[i][j] = f[i - 1][n] + f[i - 1][2];
            else if (j == n)
                f[i][j] = f[i - 1][n - 1] + f[i - 1][1];
            else
                f[i][j] = f[i - 1][j - 1] + f[i - 1][j + 1];
        }
    cout << f[m][1] << endl;
    //system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值