文章目录
一、关于动态规划
1.它用来求解哪些类型的问题?
👉计数型、最值型、存在性型
2.解题思路
二、入门练习:
A.LintCode-P669-换硬币
这是一道最值型DP,求符合条件的最小值。
(输入方式我改了一下,与领英上不同)
主要思路:
#include <bits/stdc++.h>
using namespace std;
const int MAX_VALUE = 10000000;
int main()
{
int n, price;
cin >> n >> price; //输入硬币种数n,价格price
int coin[n], f[price + 1]; //f为转移方程
for (int i = 0; i < n; i++)
cin >> coin[i];
f[0] = 0; //初始条件
for (int i = 1; i <= price; i++) //从小到大进行计算
{
f[i] = MAX_VALUE; //先赋一个比较大的值
for (int j = 0; j < n; j++)
{
if (i >= coin[j] && f[i - coin[j]] != MAX_VALUE) //防止数组下标越界和判定出错
f[i] = min(f[i - coin[j]] + 1, f[i]); //转移方程
}
}
if (f[price] == MAX_VALUE)
f[price] = -1;
cout << f[price] << endl;
//system("pause");
return 0;
}
B.LintCode-P114-不同的路径
这是计数型问题。
据题意,机器人只能向右或者向下移动;设n行m列,则终点是(n-1,m-1)
根据(一)中所说,看最后一步确定状态:要走到终点,只有两个点可以:
(n-1,m-2)、(n-2,m-1)
于是问题变成了:走到上述两点有多少种方式?
这就是子问题,所以我们可以确定转移方程f[i][j]代表的是点的坐标。
设走到(n-1,m-2)有X种,走到(n-2,m-1)有Y种,根据加法原理,答案即为X+Y。
可以看出终点位置的答案为:终点位置上面的值+终点位置左边的值
所以计算顺序我们选择:行→从上往下,列→从左往右 计算。
又可以看出,当路径为第一行或者第一列时,均只有一种走法
代码如下:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, m;
cin >> n >> m;
int f[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
{
if (i == 0 || j == 0)
f[i][j] = 1;
else
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
printf("%d\n", f[n - 1][m - 1]);
//system("pause");
return 0;
}
C.LintCode-P116-跳跃游戏
这是存在性型问题,问你可不可以、行不行。
①首先确定状态:
②发现子问题:
③写出转移方程:
④确定计算顺序:
代码如下(输入方式有改动):
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;//跳台个数
cin >> n;
int A[n];//每个台对应的最大跳跃距离
for (int k = 0; k < n; k++)
cin >> A[k];
bool f[n];//转移方程
f[0] = 1;
int j;
for (j = 1; j < n; j++)
{
f[j] = 0;//先假设跳不到j,若符合条件再改为1
for (int i = 0; i < j; i++)
{
if (f[i] && i + A[i] >= j)
{
f[j] = 1;
break;
}
}
}
if (f[j] == 1)
cout << "true" << endl;
else
cout << "false" << endl;
//system("pause");
return 0;
}
D.洛谷:P1057-传球游戏
截图摘自洛谷: Arkhails_Dragon
这里存的应该是每次传球时各位置上的人接到球的可能性。
#include <bits/stdc++.h>
using namespace std;
int n, m;
int f[31][31];
int main()
{
cin >> n >> m;
f[0][1] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
{
if (j == 1)
f[i][j] = f[i - 1][n] + f[i - 1][2];
else if (j == n)
f[i][j] = f[i - 1][n - 1] + f[i - 1][1];
else
f[i][j] = f[i - 1][j - 1] + f[i - 1][j + 1];
}
cout << f[m][1] << endl;
//system("pause");
return 0;
}