一文带你读懂残差网络ResNet

文章介绍了残差网络(ResNet)如何通过跨层连接解决深度神经网络中的梯度问题,增强非线性建模,允许训练更深的网络,减少参数量并加速训练。关键在于其残差块设计和跳跃式连接策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀 作者 :“码上有钱”
🚀 文章简介 :AI-残差算法
🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬

简介

残差网络(Residual Neural Network, ResNet)是深度神经网络的一种。它通过增加跨层连接(skip connection)将输入信息直接传递到输出,有助于解决深层网络训练中的梯度消失和梯度爆炸问题减少了参数量提高了网络性能

问题

  1. 传统的神经网络结构,信号从输入到输出需要经过多个非线性映射,每一层映射的输出结果都作为下一层映射的输入进行处理。但是,这样的映射过程将产生一些问题,例如深层神经网络难以训练,梯度消失问题、梯度爆炸问题等。
  2. 同时由于神经网络层数的增多,会出现精度退却的问题。

如下图,层数多训练和测试精度反而不高。
层数过度精度反而不高

残差结构

为了解决这些问题,ResNet提出了残差块,它采用了跳跃式连接的方法,在网络中加入直接连接以便于信息的快速传递。

残差结构
在学习过程中,优先选择更短的路径学习,以至于效果至少不会太差!

优点

  1. 强大的非线性建模能力:残差网络由于可以通过堆叠多个隐藏层,从而可以学习到更复杂的非线性关系。这使得残差网络在许多复杂任务上比传统的神经网络表现更好。
  2. 避免梯度消失和梯度爆炸问题:由于深层网络的反向传播过程中的梯度会逐渐变小(梯度消失)或者变大(梯度爆炸),导致模型难以收敛或者训练不稳定。残差网络通过跨层连接直接传递梯度,有效地解决了这个问题。
  3. 可以训练更深的网络:传统的神经网络很难训练超过几十层,而残差网络则可以轻松地训练数百层甚至更深的网络结构。
  4. 更少的参数:相比普通的卷积神经网络,在保持相同性能的情况下,残差网络需要的参数数量要少很多。这是因为残差网络的每一个Residual Block只需要学习残差部分,而不需要重复学习输入数据。
  5. 加速训练:由于残差网络的结构,每个层只需要学习残差部分,可以减少训练参数的数量、减小计算量,从而加快网络的训练。
  6. 提高模型稳定性:由于残差网络的输入和输出是一致的,使得网络更容易收敛并且更稳定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上有前

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值