附录 9A 计量经济学实验室#5

第三步:检验残差的随机性

分析第二步结果

  1. 残差均值:

    • 均值为 0.00000,说明模型没有系统性偏误,即回归模型的拟合没有整体的高估或低估情况。
    • 这是一个理想结果,符合线性回归假设。
  2. 残差标准差:

    • 标准差为 88.94573,表明残差的波动较大。虽然均值为零,但较大的波动可能暗示模型未完全捕捉数据的特征,或某些解释变量的变化未被纳入模型。
  3. 年份与残差的相关性系数:

    • 相关性系数为 -0.14399,接近 0,说明残差与年份之间的线性相关性较弱,没有显著的趋势。
    • 但相关性系数虽然较低,仍需通过图形分析进一步验证残差是否完全随机。

第三步:检验残差的随机性

问题
  • 线图分析
    • 如果残差相对于年份 (year) 的线图随机分布,说明模型拟合较好,未出现显著的模式或趋势。
    • 如果图中出现趋势(如持续增加、波动性变化),说明残差不是完全随机的,可能需要改进模型。

线图绘制及分析

以下是绘制残差线图的代码及分析:

import matplotlib.pyplot as plt

# 绘制残差相对于年份的线图
plt.figure(figsize=(10, 5))
plt.plot(data['year'], residuals, linestyle='-', marker='o', color='blue', label='残差')
plt.axhline(0, color='red', linestyle='--', label='零线')
plt.title('残差相对于年份的线图')
plt.xlabel('年份 (year)')
plt.ylabel('残差 (e)')
plt.legend()
plt.grid(True)
plt.show()
图像解读
  1. 如果残差完全随机

    • 残差点围绕零线上下波动,无明显的趋势性或周期性,表明残差具有随机性。
    • 在这种情况下,可以认为模型拟合较好,基本满足线性回归假设。
  2. 如果残差非随机

    • 残差呈现明显趋势,如逐渐上升或下降,或波动幅度随时间变化(即异方差性)。
    • 这种情况表明模型可能遗漏了与时间相关的变量,或需要进一步改进(如加入年份作为解释变量,或者用非线性模型拟合)。

结果解释

根据第二步结果以及残差线图:

  • 残差均值为零且相关性系数接近零,初步表明模型没有显著偏误。
  • 标准差较高可能反映变量间关系未被完全捕捉,或存在噪声干扰。
  • 线图验证
    • 如果线图显示残差完全随机,可以说明模型对 con 的拟合效果较好。
    • 如果线图显示非随机特征(如趋势性波动或模式),需要改进模型(例如引入更多变量或改用非线性方法)。

第四步:杜宾-沃森检验分析

问题背景

杜宾-沃森统计量用于检验回归残差的一阶自相关性。统计量范围为 [0, 4],通常基于其值的区间判断是否存在正自相关、负自相关或没有自相关。


a. 原假设和备择假设

  • 原假设 (Null Hypothesis, (H_0)):残差不存在自相关性(即,残差是独立的)。
  • 备择假设 (Alternative Hypothesis, (H_a))
    • 正的序列相关性:残差存在正的一阶自相关。
    • 负的序列相关性:残差存在负的一阶自相关。

杜宾-沃森检验主要关注正的序列相关性,因此我们考虑备择假设 (H_a):残差存在正的一阶自相关。


b. 5% 显著性水平下,杜宾-沃森检验的上下限临界值

步骤 1:确定上下限值

杜宾-沃森统计量的上下限值取决于:

  1. 回归模型的样本大小 ((n)):你的数据集大小。
  2. 解释变量的个数 ((k)):即模型中的自变量数量(不包括常数项)。
  • (d_L):下限值(Lower critical value)。
  • (d_U):上限值(Upper critical value)。

在统计表中可以查找杜宾-沃森上下限值。如果无法找到表格,也可以通过 Python 或近似公式进行计算。


步骤 2:杜宾-沃森统计量的判别规则

杜宾-沃森统计量 ((DW)) 与上下限值 ((d_L, d_U)) 的关系:

  1. 正的序列相关性
    • 如果 (DW < d_L),拒绝原假设,存在正的一阶自相关。
  2. 无序列相关性
    • 如果 (d_L < DW < d_U),无法确定是否存在自相关。
    • 如果 (d_U \leq DW \leq 4-d_U),接受原假设,无自相关。
  3. 负的序列相关性
    • 如果 (DW > 4-d_L),拒绝原假设,存在负的一阶自相关。

c. 分析你的结果

你得到的杜宾-沃森统计量为:
[DW = 0.3858]

判断
  1. 假设: 假设 (n = 50)(样本大小),(k = 2)(自变量个数),在 5% 显著性水平下:
    • 查表得 (d_L = 1.46),(d_U = 1.74)(上下限值具体需要根据样本大小查找杜宾-沃森表)。
  2. 比较:
    • 你的统计量 (DW = 0.3858 < d_L = 1.46)。
结论:
  • 在 5% 的显著性水平下,拒绝原假设,说明残差存在显著的正的一阶自相关

解释

  • 杜宾-沃森统计量低于下限值,表明残差与前一时期的残差具有较强的正相关性。
  • 正的一阶自相关意味着模型的残差中可能存在遗漏的重要变量或时间序列依赖性。

附:Python代码验证上下限值

如果要查找临界值,可以通过以下代码来估算:

from statsmodels.stats.stattools import durbin_watson

# 杜宾-沃森统计量
dw_stat = durbin_watson(residuals)
print(f"杜宾-沃森统计量: {dw_stat}")

# 设置假设样本量和自变量个数,查找上下限值
n = len(data)  # 样本大小
k = X.shape[1] - 1  # 自变量数量(不包括常数项)

# 杜宾-沃森上下限值表可在统计书籍或在线查找
print("注意:上下限值 (d_L, d_U) 需查表,根据样本大小和自变量数量确定。")

建议改进

由于存在显著的正序列相关性,可以考虑以下改进方法:

  1. 加入滞后变量
    • 将自变量或因变量的滞后项纳入模型,捕捉时间序列依赖性。
  2. 使用 Newey-West 修正
    • 调整模型的标准误,处理序列相关性问题。
  3. 重新评估模型结构
    • 检查是否遗漏了与时间相关的关键变量。

第五步:拉格朗日乘数检验(布鲁什-戈德弗雷检验)分析


a. 拉格朗日乘数检验的原假设和备择假设是否与杜宾-沃森检验的相同?说明原因。

答案

  • 原假设 ((H_0))
    • 拉格朗日乘数检验(布鲁什-戈德弗雷检验,Breusch-Godfrey Test):残差不存在序列相关性。
    • 杜宾-沃森检验:残差不存在一阶序列相关性。
  • 备择假设 ((H_a))
    • 拉格朗日乘数检验:残差存在序列相关性(包括高阶相关性)。
    • 杜宾-沃森检验:残差存在正的一阶序列相关性。

原因

  • 相同点
    • 两种方法的原假设和备择假设都围绕“残差是否存在序列相关性”展开。
    • 如果原假设被拒绝,说明模型的残差具有相关性。
  • 不同点
    • 杜宾-沃森检验专门检测一阶自相关,不能检测高阶序列相关性。
    • 布鲁什-戈德弗雷检验是一种更一般化的检验方法,可以检测高阶序列相关性

因此,拉格朗日乘数检验的适用范围更广,可以检测一阶及更高阶的序列相关性。


b. 在 5% 的显著性水平下,用拉格朗日乘数检验来检验是否存在序列相关性。你能得出什么结论?请解释。

检验结果

  • 布鲁什-戈德弗雷检验输出结果为:
    • 检验统计量 (LM = 41.0714)
    • (p)-值为 (2.598 \times 10^{-8}),非常小。

分析

  • 假设
    • (H_0):残差不存在序列相关性。
    • (H_a):残差存在序列相关性。
  • 判决规则
    • 当 (p)-值小于显著性水平(5%,即 0.05)时,拒绝原假设。
    • (p)-值为 (2.598 \times 10^{-8}),远小于 0.05,因此在 5% 的显著性水平下,我们拒绝 (H_0)。

结论

  • 布鲁什-戈德弗雷检验表明残差存在显著的序列相关性,这可能导致模型估计的效率降低或标准误偏差。
  • 需要对模型进行改进,如加入滞后变量、重新构造模型,或使用 Newey-West 修正等方法。

解释

拉格朗日乘数检验是一种广泛适用的方法,可以检测高阶序列相关性,比杜宾-沃森检验更灵活。根据本题结果,我们发现模型的残差存在显著的序列相关性,因此下一步需要改进模型以解决这一问题。

第六步:广义最小二乘法(GLS)分析**


a. 如果你在前面的步骤中得到了存在序列相关性的结论,请用广义最小二乘法重新估计模型。

答案
前面步骤中,杜宾-沃森检验和布鲁什-戈德弗雷检验的结果表明,残差存在显著的序列相关性。因此,我们需要使用广义最小二乘法(GLS)重新估计模型,以修正模型中因序列相关性引起的偏误。

以下是使用 GLS 重新估计模型的代码:

import statsmodels.api as sm

# 用广义最小二乘法(GLS)重新估计模型
gls_model = sm.GLS(y, X).fit()

# 输出GLS模型的估计结果
print("用广义最小二乘法重新估计模型结果:")
print(gls_model.summary())

b. 用广义最小二乘法得到的参数估计值和统计量是否与用普通最小二乘法得到的系数和统计量相同?请解释。

答案

  1. 理论分析

    • 在存在序列相关性的情况下,普通最小二乘法(OLS)虽然仍然是无偏估计,但其估计的标准误可能是不准确的,从而导致 (t)-统计量和 (p)-值的计算有偏差。
    • 广义最小二乘法(GLS)通过考虑残差的协方差结构,能生成更有效的估计,从而修正参数估计值和标准误的偏差。
  2. 实践结果

    • 系数估计值:GLS 的参数估计值可能与 OLS 略有不同,尤其是在序列相关性显著时。这是因为 GLS 调整了残差的相关性,权重了不同观测值的贡献。
    • 统计量(如标准误和 (t)-值):GLS 的标准误可能显著不同于 OLS,原因是 GLS 修正了 OLS 未考虑的序列相关性。

    代码如下,请根据代码结果进行实验分析

    # OLS模型
    ols_model = sm.OLS(y, X).fit()
    
    # GLS模型
    gls_model = sm.GLS(y, X).fit()
    
    # 打印OLS和GLS模型摘要
    print("普通最小二乘法 (OLS) 模型结果:")
    print(ols_model.summary())
    
    print("广义最小二乘法 (GLS) 模型结果:")
    print(gls_model.summary())
    
    

    分析结果如下:

    分析 OLS 和 GLS 结果对比

    从两张图片中的结果可以看到,OLS 和 GLS 的参数估计值及统计量存在一定的相似性,但仍需从以下方面具体分析:


    1. 参数估计值

    • 常数项 ((const))
      • OLS: (-165.4441)
      • GLS: (-165.4441)
    • 可支配收入 ((dpi))
      • OLS: (0.9320)
      • GLS: (0.9320)
    • 实际利率 ((aaa))
      • OLS: (-12.5420)
      • GLS: (-12.5420)

    结论

    • OLS 和 GLS 的参数估计值完全相同。这是因为 GLS 的目标是修正标准误和序列相关性,而不是改变回归系数本身。OLS 在无偏性方面仍然成立,因而两者的估计值一致。

    2. 标准误

    • 常数项 ((const))
      • OLS: (23.092)
      • GLS: (23.092)
    • 可支配收入 ((dpi))
      • OLS: (0.005)
      • GLS: (0.005)
    • 实际利率 ((aaa))
      • OLS: (3.804)
      • GLS: (3.804)

    结论

    • OLS 和 GLS 的标准误完全一致。这表明序列相关性可能没有通过 GLS 得到有效修正,需进一步检查残差的随机性。

    3. (t)-统计量和 (p)-值

    • 常数项 ((const))
      • (t)-统计量:(-7.165)(OLS 和 GLS 相同)
      • (p)-值:(0.000)(OLS 和 GLS 相同)
    • 可支配收入 ((dpi))
      • (t)-统计量:(191.726)(OLS 和 GLS 相同)
      • (p)-值:(0.000)(OLS 和 GLS 相同)
    • 实际利率 ((aaa))
      • (t)-统计量:(-3.297)(OLS 和 GLS 相同)
      • (p)-值:(0.002)(OLS 和 GLS 相同)

    结论

    • OLS 和 GLS 的 (t)-统计量和 (p)-值完全一致。这表明 GLS 并未显著改进模型对序列相关性或标准误的调整。

    4. 模型拟合指标

    • R-squared 和 Adj. R-squared
      • OLS: (0.999)
      • GLS: (0.999)
    • AIC 和 BIC
      • OLS: (738.5, 744.8)
      • GLS: (738.5, 744.8)

    结论

    • GLS 和 OLS 在模型拟合优度 ((R^2)) 和信息准则 (AIC 和 BIC) 上完全一致。
    • 说明 GLS 没有提供额外的拟合优度改进。

    5. 杜宾-沃森统计量

    • OLS: (0.386)
    • GLS: (0.386)

    结论

    • 杜宾-沃森统计量在 OLS 和 GLS 中完全一致。这表明 GLS 并未有效修正序列相关性问题。

    总体结论

    1. 系数一致性

      • GLS 的参数估计值与 OLS 完全相同,说明 GLS 没有改变回归系数。
      • OLS 在无偏性方面成立,因此即使存在序列相关性,参数估计值也是一致的。
    2. 标准误一致性

      • OLS 和 GLS 的标准误完全一致,这表明 GLS 并未显著修正序列相关性对标准误的影响。
    3. 杜宾-沃森统计量未改善

      • GLS 的杜宾-沃森统计量仍为 (0.386),表明残差中的序列相关性问题未得到解决。
    4. 改进建议

      • GLS 的效果可能受到模型假设的限制。考虑以下改进:
        • 检查是否遗漏了与时间相关的重要变量。
        • 引入滞后变量以捕捉残差的动态依赖。
        • 使用 Newey-West 修正以调整标准误。

c. 在广义最小二乘法的转换之后,序列相关是否仍存在?证明你的答案。

答案

  1. 验证序列相关性

    • 在 GLS 转换后,重新检查杜宾-沃森统计量。如果统计量仍然非常小(如 0.3858),说明序列相关性并未完全消除。
  2. 代码实现
    以下代码计算 GLS 模型的杜宾-沃森统计量:

    from statsmodels.stats.stattools import durbin_watson
    
    # 获取GLS模型的残差
    gls_residuals = gls_model.resid
    
    # 计算杜宾-沃森统计量
    dw_stat_gls = durbin_watson(gls_residuals)
    print(f"GLS模型的杜宾-沃森统计量:{dw_stat_gls}")
    
  3. 结论分析

    • 如果 GLS 的杜宾-沃森统计量仍然接近 0.3858,则可以证明序列相关性仍然存在,说明 GLS 并未完全消除序列相关性。
    • 可能的原因包括:模型中遗漏了关键变量,或者残差存在更复杂的依赖结构。
    • 如果 GLS 的杜宾-沃森统计量接近 2,则可以认为序列相关性已被消除,说明 GLS 的修正是有效的。

总结

  1. a. 广义最小二乘法(GLS)重新估计模型,以修正序列相关性问题。
  2. b. GLS 的参数估计值和 OLS 可能不同,尤其是统计量(如标准误和 (t)-值),因为 GLS 调整了残差的相关性。
  3. c. 通过 GLS 残差的杜宾-沃森统计量验证序列相关性是否仍存在。如果统计量接近 0 或远离 2,说明序列相关性尚未完全消除,需要进一步改进模型。

第七步:使用 Newey-West 修正模型**


a. 如果你在第 6 步中运行了广义最小二乘法模型,现在运用 Newey-West 的 1 期滞后估计总消费模型。

Newey-West 修正方法是一种稳健估计方法,用于调整因残差存在序列相关性和异方差性引起的标准误偏差。它不改变系数估计值,但会调整标准误、(t)-统计量和 (p)-值。

代码实现

from statsmodels.stats.sandwich_covariance import cov_hac

# 使用普通最小二乘法模型应用 Newey-West 修正
nw_model = ols_model.get_robustcov_results(cov_type='HAC', maxlags=1)

# 输出 Newey-West 修正后的模型结果
print("Newey-West 修正后的模型结果:")
print(nw_model.summary())

b. 在 Newey-West 的计算后,得到的系数是否与用普通最小二乘法 (OLS) 得到的系数相同?请解释。

答案

  • 系数比较
    • Newey-West 修正后,系数估计值与普通最小二乘法 (OLS) 的系数完全相同。
    • 原因是 Newey-West 修正只调整了标准误,并不影响系数的估计值。

解释

  • OLS 的系数估计是无偏的,即使存在序列相关性,系数本身并不受影响。
  • Newey-West 修正旨在对序列相关性和异方差性进行调整,从而修正标准误,使其更可靠。

c. 为什么 Newey-West 的统计量与普通最小二乘法的统计量不同?

答案

  1. Newey-West 调整了标准误

    • 普通最小二乘法假设残差独立同分布(iid),但在存在序列相关性和异方差性时,这一假设不成立,导致 OLS 标准误可能被低估或高估。
    • Newey-West 修正通过 HAC(Heteroscedasticity and Autocorrelation Consistent)方法,调整了标准误,使得其在异方差和序列相关性下更加稳健。
  2. 对统计量的影响

    • (t)-统计量 = (\text{系数估计值} / \text{标准误})
    • 因此,修正后的标准误会直接影响 (t)-统计量和 (p)-值。Newey-West 修正可能使某些变量的显著性发生变化。

d. 你更倾向于哪一个?为什么?

答案

  • 倾向于 Newey-West 修正
    • 原因是 Newey-West 修正能够处理残差中的异方差性和序列相关性问题,使得标准误的估计更加稳健。
    • 如果数据中存在明显的序列相关性或异方差性,OLS 的标准误和 (t)-统计量会有偏差,导致显著性判断不可靠。
    • Newey-West 修正能更准确地反映模型的真实显著性,尤其是在时间序列数据中。

总结
  1. 系数一致性:Newey-West 修正不会改变系数估计值,与 OLS 一致。
  2. 标准误修正:Newey-West 修正通过调整标准误,提高了统计量的稳健性。
  3. 优先选择:在存在异方差性和序列相关性时,应优先选择 Newey-West 修正后的结果,因为它能提供更可靠的推断。

over 嘿嘿~~

静态链表示意图:2.2 顺序表与链表的比较存储密度比较:顺序表:只存储数据元素、预分配存储空间链表:指针的结构性开销、链表中的元素个数没有限制按位查找:顺序表:O(1),随机存取链表:O(n),顺序存取插入和删除:顺序表:O(n),平均移动表长一半的元素链表:不用移动元素,合适位置的指针——O(1)时间复杂度:顺序表:若线性表频繁查找却很少进行插入和删除操作链表:若线性表需频繁插入和删除时空间复杂度:顺序表:知道线性表的大致长度,空间效率会更高链表:若线性表中元素个数变化较大或者未知2.3 栈        定义:限定仅在一端(栈顶)进行插入和删除操作的线性表,后进先出。栈示意图:        时间复杂度(插入与删除):顺序栈与链栈均为O(1)        空间复杂度:链栈多一个指针域,结构性开销较大,使用过程中元素个数变化较大时,用链栈;反之顺序栈。        出栈元素不同排列的个数:   (卡特兰数)        共享栈: 两个栈共享一片内存空间, 两个栈从两边往中间增长。卡特兰数的应用:存储结构:顺序栈初始化:top=-1链栈初始化:top=NULL栈的应用:        1) 括号匹配        2) 递归        3) 中缀表达式 转 后缀表达式        4) 中缀表达式:设两个栈(数据栈和运算符栈),根据运算符栈的优先级进行运算。2.4 队列        定义: 只允许在一端插入, 在另一端删除。具有先进先出的特点。队列示意图:        时间复杂度:均为O(1)        空间复杂度:链队列多一个指针域,结构性开销较大;循环队列存在浪费空间和溢出问题。使用过程中元素个数变化较大时,用链队列;反之循环队列。        双端队列: 只允许从两端插入、两端删除的线性表。双端队列示意图: 存储结构:        链队列:队头指针指向队头元素的前一个位置,队尾指针指向队尾元素,先进先出。        循环队列:                1)队空:front=rear                2)队满:(rear+1)%QueueSize=front                3)队列元素个数:(队尾-队头+队长)%队长==(rear-front+QueueSize)%QueueSize队列的应用:        1) 树的层次遍历        2) 图的广度优先遍历2.4 数组与特殊矩阵一维数组的存储结构:二维数组的存储结构: 对称矩阵的压缩(行优先):下三角矩阵的压缩(行优先):  上三角(行优先):三对角矩阵的压缩(行优先):稀疏矩阵压缩:十字链表法压缩稀疏矩阵:2.5 串        串,即字符串(String)是由零个或多个字符组成的有限序列。串是一种特殊的线性表,数据元素之间呈线性关系。字符串模式匹配:        1)朴素模式匹配算法        2)KMP算法手算KMP的next数组示意图:求next[2] :求next[3]: 求next[4]: 求next[5]: C语言求KMP的next数组代码示例:void Createnext(char *sub, int *next){ assert(sub != NULL && next != NULL); int j = 2; //模式串的next指针 int k = 0; //next数组的回溯值,初始化为next[1]=0 int lenSub = strlen(sub); assert(lenSub != 0); next[0] = -1; next[1] = 0; while (j < lenSub){ if (sub[j-1] == sub[k]){ next[j] = ++k; j++; } else{ k = next[k]; if (k == -1){ k = 0; next[j] = k; j++; } } }}求nextValue:void nextValue(char *sub, int *next) { int lenSub = strlen(sub); for(int j=2;j<lensub; j++){ if(sub[j]==sub[next[j]]) next[j]=next[next[j]] }}备注:         1) 实现next有多种不同方式, 对应不同的next数组使用        2) 根据实现方式不同, next数组整体+1不影响KMP算法。第三章 树和二叉树3.1 树和森林        定义(树):n(n≥0)个结点(数据元素)的有限集合,当 n=0 时,称为空树。3.1.1 树的基本术语        结点的度:结点所拥有的子树的个数。        叶子结点:度为 0 的结点,也称为终端结点。        分支结点:度不为 0 的结点,也称为非终端结点。        孩子:树中某结点子树的根结点称为这个结点的孩子结点。        双亲:这个结点称为它孩子结点的双亲结点。        兄弟:具有同一个双亲的孩子结点互称为兄弟。        路径:结点序列 n1, n2, …, nk 称为一条由 n1 至 nk 的路径,当且仅当满足结点 ni 是 ni+1 的双亲(1<=i<k)的关系。        路径长度:路径上经过的边的个数。        祖先、子孙:如果有一条路径从结点 x 到结点 y,则 x 称为 y 的祖先,而 y 称为 x 的子孙。        结点所在层数:根结点的层数为 1;对其余结点,若某结点在第 k 层,则其孩子结点在第 k+1 层。        树的深度(高度):树中所有结点的最大层数。        树的宽度:树中每一层结点个数的最大值。        树的度:树中各结点度的最大值。        树的路径长度:  从根到每个结点的路径长度总和        备注: 在线性结构中,逻辑关系表现为前驱——后继,一对一; 在树结构中,逻辑关系表现为双亲——孩子,一对多。        森林: 森林是m(m≥0)棵互不相交的树的集合, m可为0, 即空森林。3.1.2 树的性质        结点数=总度数+1        度为m的树第 i 层至多有 个结点(i≥1)        高度为h的m叉树至多有 个结点        具有n个结点的m叉树的最小高度为 最小高度推理过程图:3.1.3 树与森林的遍历树的遍历:先根遍历(先根后子树)后根遍历(先子树后根)层序遍历森林的遍历:前序遍历(先根, 后子树)中序遍历(先子树后根, 其实就是后序遍历树)区别与联系:         1) 树的前序遍历等价于其树转化二叉树的前序遍历!        2) 树的后序遍历等价于其树转化二叉树的中序遍历!3.1.4 树的存储结构双亲表示法图:孩子表示法图:孩子兄弟表示法图(树/森林转化为二叉树):3.1.5 树转二叉树在树转为二叉树后, 有以下结论:        1) 树的叶子结点数量 = 二叉树左空指针数量(形象理解为树越宽, 兄弟越多, 越是向右长)        2) 树的非叶子结点数量 = 二叉树右空指针-1(非叶子必有儿子, 右指针由儿子提供, -1是根节点多了一个右空指针)3.2 二叉树3.2.1 二叉树的性质斜树:左斜树:所有结点都只有左子树的二叉树右斜树:所有结点都只有右子树的二叉树        满二叉树:所有分支结点都存在左子树和右子树,且所有叶子都在同一层上的二叉树        完全二叉树:在满二叉树中,从最后一个结点开始,连续去掉任意个结点得到的二叉树完全二叉树特点:叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面完全二叉树中如果有度为 1 的结点,只可能有一个,且该结点只有左孩子深度为 k 的完全二叉树在 k-1 层上一定是满二叉树在同样结点个数的二叉树中,完全二叉树的深度最小        性质:在二叉树中,如果叶子结点数为 n0,度为 2 的结点数为 n2,则有: n0=n2+1证明: 设 n 为二叉树的结点总数,n1 为二叉树中度为 1 的结点数,则有: n=n0+n1+n2        在二叉树中,除了根结点外,其余结点都有唯一的一个分枝进入,一个度为 1 的结点射出一个分枝,一个度为 2 的结点射出两个分枝,所以有:n=n1+2n2+1        性质:二叉树的第 i 层上最多有个结点(i≥1)        性质:一棵深度为 k 的二叉树中,最多有 个结点        性质:具有 n 个结点的完全二叉树的深度为 向下取整+1 (或向上取整)证明:设具有 n 个结点的完全二叉树的深度为 k,则:≤n  <对不等式取对数,有:k-1 ≤ <k即:<k ≤ +1由于 k 是整数,故必有k= +1         性质:对一棵具有 n 个结点的完全二叉树中从 1 开始按层序编号,对于任意的序号为 i(1≤i≤n)的结点(简称结点 i),有:如果 i>1,则结点 i 的双亲结点的序号为 i/2,否则结点 i 无双亲结点如果 2i≤n,则结点 i 的左孩子的序号为 2i,否则结点 i 无左孩子如果 2i+1≤n,则结点 i 的右孩子的序号为2i+1,否则结点 i 无右孩子        性质:若已知一棵二叉树的前序序列和中序序列,或者中序序列和后序序列,能唯一确定一颗二叉树。 3.2.2 二叉树的遍历        从根结点出发,按照某种次序访问树中所有结点,并且每个结点仅被访问一次。前序遍历(深度优先遍历)中序遍历后序遍历层序遍历(广度优先遍历)3.2.3 二叉树的存储链式存储图:顺序存储图:3.2.4 线索二叉树        利用二叉树中n+1个空指针, 将指针指向结点的前驱和后继。线索二叉树是加上线索的链表结构,  是一种物理结构存储结构:示例图:三种线索化的对比图: 各自特点:3.3 哈夫曼树和哈夫曼编码        带权路径长度(WPL):从根结点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和        最优二叉树(哈夫曼树):给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树特点:权值越大的叶子结点越靠近根结点只有度为 0 和度为 2 的结点,不存在度为 1 的结点构造过程中共新建了n-1个结点, 因此总结点数为2n-1        前缀编码:在一组编码中,任一编码都不是其它任何编码的前缀, 前缀编码保证了在解码时不会有多种可能。         度为m的哈夫曼树: 通过只有度为m和度为0求解非叶子结点 3.4 并查集        存储结构: 双亲表示法        实现功能: 并查(并两个集合, 查根结点)        优化: 小树并到大树, "高树变矮树"(压缩路径)第四章 图        定义:顶点集V和边集E组成,为G = (V, E)        注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集, 边集E可以为空        子图:若图G=(V, E),G'=(V', E'),如果V' 属于 V 且E' 属于E,则称图G'是G的子图4.1 图的基本概念图的分类:        无向边:表示为(vi,vj),顶点vi和vj之间的边没有方向        有向边(弧):表示为<vi,vj>,从vi 到vj 的边有方向, vi为弧尾, vj为弧头        稠密图:边数很多的图        稀疏图:边数很少的图        无向完全图:无向图中,任意两个顶点之间都存在边        有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧度、入度和出度:        顶点的度:在无向图中,顶点 v 的度是指依附于该顶点的边数,通常为TD (v)        顶点的入度:在有向图中,顶点 v 的入度是指以该顶点为弧头的弧的数目,为ID (v);        顶点的出度:在有向图中,顶点 v 的出度是指以该顶点为弧尾的弧的数目,为OD (v);        握手定理: 路径:         回路(环):第一个顶点和最后一个顶点相同的路径        简单路径:序列中顶点不重复出现的路径        简单回路(简单环):除第一个和最后一个顶点外,其余顶点不重复出现的回路。        路径长度:非带权图——路径上边的个数        路径长度:带权图——路径上边的权值之和         极大连通子图: 连通的情况下, 包含尽可能多的边和顶点, 也称连通分量        极小连通子图: 删除该子图中任何一条b边, 子图不再连通, 如生成树无向连通图:        连通顶点:在无向图中,如果顶点vi和顶点vj(i≠j)之间有路径,则称顶点vi和vj是连通的        连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图        连通分量:非连通图的极大连通子图、连通分量是对无向图的一种划分连通分量示意图:有向强连通图、强连通分量:        强连通顶点:在有向图中,如果从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称顶点vi和vj是强连通的        强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图        强连通分量:非强连通图的极大连通子图强连通分量示意图: 子图与生成子图:常考点无向图:        所有顶点的度之和=2|E|        若G是连通图,则最少有 n-1 条边(树),若 |E|>n-1,则一定有回路        若G是非连通图,则最多可能有 条边 (n-1个完全图+1个孤点)        无向完全图共有条边有向图:        所有顶点的出度之和=入度之和=|E|        所有顶点的度之和=2|E|        若G是强连通图,则最少有 n 条边(形成回路)        有向完全图共有条边图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点仅被访问一次。深度优先遍历序列(dfs)广度优先遍历序列(bfs)    备注:  调⽤BFS/DFS函数的次数 = 连通分量数4.2 图的存储结构 邻接矩阵:一维数组:存储图中顶点的信息二维数组(邻接矩阵):存储图中各顶点之间的邻接关系特点:一个图能唯一确定一个邻接矩阵,存储稀疏图时,浪费空间。空间复杂度为: O()。示意图:性质 (行*列) :邻接表:顶点表:所有边表的头指针和存储顶点信息的一维数组边表(邻接表):顶点 v 的所有邻接点链成的单链表示意图:特点:空间复杂度为:O(n+e), 适合存储稀疏图。两者区别:十字链表法图:备注:         1) 十字链表只用于存储有向图        2) 顺着绿色线路找: 找到指定顶点的所有出边        3) 顺着橙色线路找: 找到指定顶点的所有入边        4) 空间复杂度:O(|V|+|E|)邻接多重表图:备注:        1) 邻接多重表只适用于存储无向图        2) 空间复杂度:O(|V|+|E|)四者区别: 4.3 最小生成树        生成树:连通图的生成树是包含全部顶点的一个极小连通子图, 可用DFS和BFS生成。        生成树的代价:在无向连通网中,生成树上各边的权值之和        最小生成树:在无向连通网中,代价最小的生成树        性质: 各边权值互不相等时, 最小生成树是唯一的。边数为顶点数-1生成森林示意图:4.3.1 Prim算法        从某⼀个顶点开始构建⽣成树;每次将代价最⼩的新顶点纳⼊⽣成树,直到所有顶点都纳⼊为⽌。基于贪心算法的策略。        时间复杂度:O(|V|2) 适合⽤于边稠密图。4.3.2 Kruskal 算法(克鲁斯卡尔)        每次选择⼀条权值最⼩的边,使这条边的两头连通(原本已经连通的就不选), 直到所有结点都连通。基于贪心算法的策略。        时间复杂度:O( |E|log2|E| ) 适合⽤于边稀疏图。4.4 最短路径        非带权图: 边数最少的路径(广度优先遍历)        带权图: 边上的权值之和最少的路径4.4.1 Dijkstra算法        时间复杂度:O(n2)        备注: Dijkstra 算法不适⽤于有负权值的带权图4.4.2 Floyd算法核心代码:        时间复杂度:O(n3)        备注: 可以⽤于负权值带权图, 不能解决带有“负权回路”的图三者区别:4.5 有向⽆环图(DAG)描述表达式 (简化前) :描述表达式 (简化后) :4.6 拓扑排序        AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边表示活动Vi必须先于活动Vj进⾏如图:拓扑排序的实现:        ① 从AOV⽹中选择⼀个没有前驱(⼊度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为起点的有向边。        ③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。逆拓扑排序(可用DFS算法实现):        ① 从AOV⽹中选择⼀个没有后继(出度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为终点的有向边。        ③ 重复①和②直到当前的AOV⽹为空备注: 上三角(对角线为0)矩阵, 必不存在环, 拓扑序列必存在, 但拓扑不唯一。(拓扑唯一, 图不唯一)4.7 关键路径        在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),称之为⽤边表示活动的⽹络,简称AOE⽹示意图:        关键活动: 从源点到汇点的有向路径可能有多条,所有路径中,具有最⼤路径⻓度的路径称为 关键路径,⽽把关键路径上的活动称为关键活动。        事件vk的最早发⽣时间: 决定了所有从vk开始的活动能够开⼯的最早时间。        活动ai的最早开始时间: 指该活动弧的起点所表⽰的事件的最早发⽣时间。        事件vk的最迟发⽣时间: 它是指在不推迟整个⼯程完成的前提下,该事件最迟必须发⽣的时间。        活动ai的最迟开始时间: 它是指该活动弧的终点所表示事件的最迟发⽣时间与该活动所需时间之差。        活动ai的时间余量:表⽰在不增加完成整个⼯程所需总时间的情况下,活动ai可以拖延的时间。d(k)=0的活动就是关键活动, 由关键活动可得关键路径。示例图:第五章 查找        静态查找 :不涉及插入和删除操作的查找        动态查找 :涉及插入和删除操作的查找        查找⻓度: 在查找运算中,需要对⽐关键字的次数称为查找⻓度        平均查找长度:衡量查找算法的效率公式:5.1 顺序查找(线性查找):        顺序查找适合于存储结构为顺序存储或链接存储的线性表。  基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。        时间复杂度: O(n)。有序顺序查找的ASL图:        无序查找失败时的平均查找长度:  n+1次 (带哨兵的情况)5. 2 折半查找:        元素必须是有序的,顺序存储结构。判定树是一颗平衡二叉树, 树高 (由n=-1得来)。        基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表。        公式:mid=(low+high)/2, 即mid=low+1/2*(high-low);           1)相等,mid位置的元素即为所求           2)>,low=mid+1;                3)<,high=mid-1。        时间复杂度: 二叉判定树的构造:         备注:对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,不建议使用。失败结点的ASL不是方形结点, 而是其父节点。5.3 分块查找        分块查找,⼜称索引顺序查找。        基本思想:将查找表分为若干子块, 块内的元素可以无序, 块间的元素是有序的, 即前一个快的最大元素小于后一个块的最大元素。再建立索引表, 索引表中的每个元素含有各块的最大关键字和第一个元素的地址。索引表按关键字有序排列。示意图:备注:         1) 设索引查找和块内查找的平均查找⻓度分别为LI、LS,则分块查找的平均查找⻓度为ASL=LI + LS        2) 将长度为n的查找表均匀分为b块, 每块s个录, 在等概率情况下, 若在块内和索引表中均采用顺序查找, 则平均查找长度为:5.4 二叉排序树        又称二叉查找树(BST,Binary Search Tree), 是具有如下性质的二叉树:左子树结点值 < 根结点值 < 右子树结点值        二叉排序树的插入:  新插入的结点 一定是叶子。二叉排序树的删除        1) 情况一, 删除叶结点, 直接删除        2) 情况二, 待删除结点只有一颗子树, 让子树代替待删除结点        3) 情况三, 待删除结点有左, 右子树, 则令待删除的直接前驱(或直接后继(中序遍历))代替待删除结点。示意图: (30为直接前驱, 60为直接后继)平均查找效率: 主要取决于树的高度。时间复杂度: 5.5 平衡二叉树        简称平衡树(AVL树), 树上任一结点的左子树和右子树的 高度之差不超过1。 结点的平衡因子=左子树高-右子树高。平衡二叉树的插: LL型:RR型:RL型:LR型:        平衡二叉树的删除: 同上考点:        假设以表示深度为h的平衡树中含有的最少结点数。 则有 = 0, = 1, = 2,并且有=  +          时间复杂度: 5.6 红黑树        与AVL树相比, 插入/删除 很多时候不会破坏“红黑”特性,无需频繁调整树的形态。因为AVL是高度差严格要求不超过1, 红黑树高度差不超过2倍, 较为宽泛。定义:        ①每个结点或是红色,或是黑色的        ②根节点是黑色的        ③叶结点(外部结点、NULL结点、失败结点)均是黑色的        ④不存在两个相邻的红结点(即红结点的父节点和孩子结点均是黑色)        ⑤对每个结点,从该节点到任一叶结点的简单路径上,所含黑结点的数目相同        口诀: 左根右,根叶黑 不红红,黑路同示例图:性质:        性质1:从根节点到叶结点的最长路径不大于最短路径的2倍 (红结点只能穿插 在各个黑结点中间)        性质2:有n个内部节点的红黑树高度          结论: 若根节点黑高为h,内部结点数(关键字)最多有 , 最少有示例图:红黑树的插入操作:红黑树的插入示例图:         红黑树的删除: 和“二叉排序树的删除”一样! 具体还是算了吧, 放过自己。。。        时间复杂度: 5.7 B树        B树,⼜称多路平衡查找树,B树中所被允许的孩⼦个数的最⼤值称为B树的阶,通常⽤m表示。 m阶B树的特性:        1)树中每个结点⾄多有m棵⼦树,即⾄多含有m-1个关键字。        2)若根结点不是终端结点,则⾄少有两棵⼦树。        3)除根结点外的所有⾮叶结点⾄少有 棵⼦树,即⾄少含有个关键字。         4) 所有的叶结点都出现在同⼀层次上,并且不带信息, ( 指向这些结点的指针为空 ) 。        5) 最小高度:    (n为关键字, 注意区分结点)        6) 最大高度:         7) 所有⼦树⾼度要相同        8) 叶结点对应查找失败的情况, 即n个关键字有n+1个叶子结点示例图: B树的插入(5阶为例):B树的删除:        1) 若被删除关键字在终端节点,则直接删除该关键字 (要注意节点关键字个数是否低于下限 ⌈m/2⌉ − 1)        2) 若被删除关键字在⾮终端节点,则⽤直接前驱或直接后继来替代被删除的关键字 删除77:删除38:删除90:        3) 若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结 点的关键字个数均=⌈m/2⌉ − 1,则将关键字删除后与左(或右)兄弟结点及双亲结点中的关键字进⾏合并 删除49: 5.8 B+树⼀棵m阶的B+树需满⾜下列条件        1)每个分⽀结点最多有m棵⼦树(孩⼦结点)。        2)⾮叶根结点⾄少有两棵⼦树,其他每个分⽀结点⾄少有 ⌈m/2⌉ 棵⼦树。        3)结点的⼦树个数与关键字个数相等。        4)所有叶结点包含全部关键字及指向相应录的指针,叶结点中将关键字按⼤⼩顺序排列,并且相邻叶结点按⼤⼩顺序相互链接起来        5)所有分⽀结点中仅包含它的各个⼦结点中关键字的最⼤值及指向其⼦结点的指针。所有⾮叶结点仅起索引作⽤,        6) 所有⼦树⾼度要相同B+树示例图:B+树与B树的对比图:5.9 哈希表(Hash)        根据数据元素的关键字 计算出它在散列表中的存储地址。        哈希函数: 建⽴了“关键字”→“存储地址”的映射关系。        冲突(碰撞):在散列表中插⼊⼀个数据元素时,需要根据关键字的值确定其存储地址,若 该地址已经存储了其他元素,则称这种情况为“冲突(碰撞)”        同义词:若不同的关键字通过散列函数映射到同⼀个存储地址,则称它们为“同义词”        复杂度分析:对于无冲突的Hash表而言,查找复杂度为O(1) 5.9.1 构造哈希函数        1) 除留余数法 —— H(key) = key % p, 取⼀个不⼤于m但最接近或等于m的质数p        适⽤场景:较为通⽤,只要关键字是整数即可        2) 直接定址法 —— H(key) = key 或 H(key) = a*key + b        适⽤场景:关键字分布基本连续        3) 数字分析法 —— 选取数码分布较为均匀的若⼲位作为散列地        适⽤场景:关键字集合已知,且关键字的某⼏个数码位分布均匀        4) 平⽅取中法(二次探测法)——取关键字的平⽅值的中间⼏位作为散列地址        适⽤场景:关键字的每位取值都不够均匀。5.9.2 处理冲突拉链法示意图:开放定址法:        1) 线性探测法        2) 平⽅探测法        3) 双散列法        4) 伪随机序列法示意图:        删除操作: 采用开放定址法时, 只能逻辑删除。        装填因子: 表中录数 / 散列表长度 。        备注: 平均查找长度的查找失败包含不放元素的情况。(特殊: 根据散列函数来算: 2010真题)        聚集: 处理冲突的方法选取不当,而导致不同关键字的元素对同一散列地址进行争夺的现象第六章 排序        稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;        内排序 :所有排序操作都在内存中完成;        外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。参考博客:超详细十大经典排序算法总结(java代码)c或者cpp的也可以明白_Top_Spirit的博客-CSDN博客6.1 直接插入排序动图演示:         优化: 折半插入排序6.2 希尔排序        又称缩小增量排序, 先将待排序表分割成若⼲形如 L[i, i + d, i + 2d,…, i + kd] 的“特殊”⼦表,对各个⼦表分别进⾏直接插⼊排序。缩⼩增量d,重复上述过程,直到d=1为⽌。建议每次将增量缩⼩⼀半。示例图:6.3 冒泡排序动图演示:6.4 快速排序算法思想:        1) 在待排序表L[1…n]中任取⼀个元素pivot作为枢轴(或基准)        2) 通过⼀趟排序将待排序表划分为独⽴的两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中的所有元素⼩于pivot,L[k+1…n]中的所有元素⼤于等于 pivot,则pivot放在了其最终位置L(k)上,这个过程称为⼀次“划分”。        3) 然后分别递归地对两个⼦表重复上述过程,直每部分内只有⼀个元素或空为⽌,即所有元素放在了其最终位置上。示例图:  6.5 简单选择排序        算法思想: 每⼀趟在待排序元素中选取关键字最⼩的元素加⼊有序⼦序列。动画演示:6.6 堆排序        ⼤根堆: 若满⾜:L(i)≥L(2i)且L(i)≥L(2i+1) (1 ≤ i ≤n/2 )        ⼩根堆: 若满⾜:L(i)≤L(2i)且L(i)≤L(2i+1) (1 ≤ i ≤n/2 )大根堆示例图:6.6.1 建立大根堆        思路:从开始, 把所有⾮终端结点都检查⼀遍,是否满足大根堆的要求,如果不满⾜,则进⾏调整。若元素互换破坏了下⼀级的堆,则采⽤相同的方法继续往下调整(⼩元素不断“下坠”)小元素下坠示例图:          结论: 建堆的过程,关键字对⽐次数不超过4n,建堆时间复杂度=O(n)6.6.2 堆的插入与删除        插入: 将新增元素放到表尾, 而后根据大小根堆进行上升调整。        删除: 被删除的元素⽤堆底元素替代,然后让该 元素不断“下坠”,直到⽆法下坠为⽌排序动图演示:6.7 归并排序        该算法是采用分治法, 把两个或多个已经有序的序列合并成⼀个。2路归并图:        结论:n个元素进⾏k路归并排序,归并趟数= 6.8 基数排序 (低位优先)        基数排序是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;动图演示:         时间复杂度: ⼀趟分配O(n),⼀趟收集O(r),总共 d 趟分配、收集,总的时间复杂度=O(d(n+r)) , 其中把d为关键字拆 为d个部分, r为每个部分可能 取得 r 个值。基数排序适用场景:        ①数据元素的关键字可以⽅便地拆分为 d 组,且 d 较⼩        ②每组关键字的取值范围不⼤,即 r 较⼩        ③数据元素个数 n 较⼤如:内部排序总结:         基本有序:  直接插入(比较最少), 冒泡(趟数最少)6.9 外部排序        数据元素太多,⽆法⼀次全部读⼊内存进⾏排序, 读写磁盘的频率成为衡量外部排序算法的主要因素。示例图:多路归并:        结论: 采⽤多路归并可以减少归并趟数,从⽽减少磁盘I/O(读写)次数。对 r 个初始归并段,做k路归并,则归并树可⽤ k 叉树表示 若树⾼为h,则归并趟数 = h-1 = 。K越大, r越小, 读写磁盘次数越少。(缺点: k越大, 内部排序时间越大)6.9.1 败者树        使⽤k路平衡归并策略,选出⼀个最小元素需要对⽐关键字 (k-1)次,导致内部归并所需时间增加。因此引入败者树。示例图:        结论: 对于 k 路归并,第⼀次构造败者 树需要对⽐关键字 k-1 次 , 有了败者树,选出最⼩元素,只需对⽐关键字次6.9.2 置换-选择排序        使用置换-选择排序可以减少初始化归并段。示意图: 6.9.3 最佳归并树原理图:        注意:对于k叉归并,若初始归并段的数量⽆法构成严格的 k 叉归并树, 则需要补充⼏个⻓度为 0 的“虚段”,再进⾏ k 叉哈夫曼树的构造。示例图: 添加虚段数目: 难点:结束!  !  !注: 以上部分图片素材来自王道数据结构我要的图文并茂关注
03-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上有前

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值