牛客:Ultra-QuickSort(归并排序)

牛客 Ultra-QuickSort 链接

**题目描述 **
在这个问题中,您必须分析特定的排序算法----超快速排序。

该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序。

对于输入序列9 1 0 5 4,超快速排序生成输出0 1 4 5 9。

您的任务是确定超快速排序需要执行多少交换操作才能对给定的输入序列进行排序。

输入描述:
输入包括一些测试用例。

每个测试用例的第一行输入整数n,代表该用例中输入序列的长度。0≤n<500000

接下来n行每行输入一个整数ai,代表用例中输入序列的具体数据,第i行的数据代表序列中第i个数。0≤ai≤999999999

当输入用例中包含的输入序列长度为0时,输入终止,该序列无需处理。

输出描述:
对于每个需要处理的输入序列,输出一个整数op,代表对给定输入序列进行排序所需的最小交换操作数,每个整数占一行。

输入样例:
5
9
1
0
5
4
3
1
2
3
0
输出样例:
6
0

题解

  • 题意:模拟的冒泡排序,交换的次数就是冒泡排序的交换次数,即逆序对的个数
  • 求逆序对比较快的方法之一就是归并排序
  • 归并求逆序对原理:两个有序的序列,从右边序列中最小的元素开始往左边序列中插入,设左边序列选定的元素位置为 i ,中间位置为mid,则此时交换的位置次数是 (mid - i + 1),把所有归并后交换的次数累加在一起即可

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N = 5e5 + 10;
ll n, ans;
ll a[N], b[N];

void merge(ll a[], ll l, ll r){
    if(l >= r)
        return;
    ll mid = (l + r) >> 1;
    merge(a, l, mid);
    merge(a, mid+1, r);
    ll i = l, j = mid + 1;
    for (ll k=l; k<=r; ++k){
        if (j > r || i <= mid && a[i] <= a[j])
            b[k] = a[i++];
        else {
            ans += mid - i + 1;
            b[k] = a[j++];
        }
    }
    for (ll k=l; k<=r; ++k)
        a[k] = b[k];
}

int main(){
    while(~scanf("%lld",&n) && n){
        for(ll i=1; i<=n; ++i)
            scanf("%lld",&a[i]);
        ans = 0;
        merge(a, 1, n);
        printf("%lld\n",ans);
    }
    return 0;
}

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
评论

打赏作者

进阶的小柴

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值