经典论文
文章平均质量分 83
神经网络、深度学习、图像处理、目标检测、异常检测等经典论文解读
「已注销」
这个作者很懒,什么都没留下…
展开
-
VGGNet:very deep convolutional networks for large-scale image recognition LCLR2015
下图每一列都是一个模型,本文提出6个网络模型,命名为A、A-LRN、B、C、D、E。如网络A,block1中卷积核大小3,个数64,在block2中卷积核大小不变,个数翻倍128个,在block3中卷积核大小不变,个数在block的基础上又翻倍变成256个,同时卷积层数从1层变成了2层。输入彩色图像信息为224×224×3,block1有64个卷积核,对输入图像做下采样,原图的长宽从224×224缩减为原来的一半,即112×112,但是通道数由64增加一半到128,block2-6依次做类似处理。原创 2024-01-18 23:51:51 · 550 阅读 · 0 评论 -
GAN:Generative Adversarial Nets
从生成器G的角度来看,生成器G希望真实图像x和生成图像G(z)区分不开,即希望虚假数据G(z)可以尽可能骗过判别器D,也就是希望D(G(z))尽可能大,1-D(G(z)就更小,log(1-D(G(z))更小,也就是V(D,G)整体尽可能小,即对G取min V(D,G)。若D(x)是非常完美的判别器,D(x)=1,则V(D,G)=0,而若有误分类时,D(x)<1时,log(D(x))和log(1-D(G(z))都会是负值。G(z)表示生成图像,D(x)表示对真实图像的判别,D(G(x))表对生成图像的判别。原创 2024-01-22 16:25:15 · 980 阅读 · 0 评论 -
ResNet:Deep Residual Learning for Image Recognition CVPR 2015
新加的那些层不要直接去学F(x),而是应该去F(x)-x,x是原始的浅层神经网络已经学到的一些东西,新加的层不要重新去学习,而是去学习学到的东西和真实的东西之间的残差,最后整个神经网络的输等价于浅层神经网络的输出x和新加的神经网络学习残差的输出之和,将优化目标从F(x)转变成为F(x)-x.传统的方式获得更好的网络不是依靠堆叠更多的层实现的,若简单堆叠层,一个问题随之出现:网络的层数越来越深,梯度爆炸或梯度消失问题就会出现。带点的快捷连接增加了维度。(i)对于相同的输出特征图尺寸,层具有相同数量的滤波器;原创 2024-01-14 11:44:40 · 832 阅读 · 0 评论