SimpleNet: A Simple Network for Image Anomaly Detection and Localization CVPR2023

文章信息
题目:SimpleNet: A Simple Network for Image Anomaly Detection and Localization CVPR2023
原文:https://ieeexplore.ieee.org/document/10203746
代码:https://github.com/donaldrr/simplenet
数据集:MvTec AD

一、简述
图像异常检测和定位在工业上有大量应用。常见的图像异常检测的方法大致分为3类,即基于重构的方法(AE-SSIM, RIAD),基于合成的方法(DR-EM, CutPaste),基于嵌入的方法(CS-Flow, PaDIM, RevDist, PatchCore)。而本文提出的SimpleNet方法则是综合了合成和嵌入方法,并做了改进。SimpleNet网络由4部分构成,分别是预训练的特征提取器,浅层的特征适配器,异常特征生成器和异常判别器。本文在数据集MvTec AD上进行实验,选取基准方法(基于重构、合成、嵌入)作为对比,以FPS,AUROC作为评判标准。实验表明SimpleNet方法比以往的检测方法效果都好,且其网络构成简单,在工业上却能容易训练和应用,将学术成果转化工业应用。

二、SimpleNet模型
SimpleNet网络由4部分构成,分别是预训练的特征提取器,浅层的特征适配器,异常特征生成器和异常判别器。下图是SimpleNet网络模型图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值