文章信息
题目:SimpleNet: A Simple Network for Image Anomaly Detection and Localization CVPR2023
原文:https://ieeexplore.ieee.org/document/10203746
代码:https://github.com/donaldrr/simplenet
数据集:MvTec AD
一、简述
图像异常检测和定位在工业上有大量应用。常见的图像异常检测的方法大致分为3类,即基于重构的方法(AE-SSIM, RIAD),基于合成的方法(DR-EM, CutPaste),基于嵌入的方法(CS-Flow, PaDIM, RevDist, PatchCore)。而本文提出的SimpleNet方法则是综合了合成和嵌入方法,并做了改进。SimpleNet网络由4部分构成,分别是预训练的特征提取器,浅层的特征适配器,异常特征生成器和异常判别器。本文在数据集MvTec AD上进行实验,选取基准方法(基于重构、合成、嵌入)作为对比,以FPS,AUROC作为评判标准。实验表明SimpleNet方法比以往的检测方法效果都好,且其网络构成简单,在工业上却能容易训练和应用,将学术成果转化工业应用。
二、SimpleNet模型
SimpleNet网络由4部分构成,分别是预训练的特征提取器,浅层的特征适配器,异常特征生成器和异常判别器。下图是SimpleNet网络模型图: