在上一小节“驻定相点原理与脉冲压缩”中我们得到LFM信号沿快时间
t
t
t的傅里叶变换近似表达式
S
p
c
(
f
,
t
m
)
≈
1
∣
μ
∣
r
e
c
t
(
f
B
)
e
x
p
[
−
j
4
π
c
(
f
+
f
c
)
(
R
0
+
v
t
m
)
]
\begin{align} S_{pc}(f,t_m)≈\frac{1}{|μ|}rect(\frac{f}{B})exp\left[-j\frac{4π}{c}(f+f_c)(R_0+vt_m)\right] \end{align}
Spc(f,tm)≈∣μ∣1rect(Bf)exp[−jc4π(f+fc)(R0+vtm)]
距离走动的原因在于式(1)的指数项的展开式中包含
f
⋅
v
t
m
f\cdot vt_m
f⋅vtm,它表明距离频率域与多普勒域之间存在耦合,当转换为时域时,这种耦合导致了各个脉冲回波的峰值位置彼此不同,因此,作变量代换:
f
c
τ
m
=
(
f
+
f
c
)
t
m
\begin{align} f_c\tau_m=\left(f+f_c\right)t_m \end{align}
fcτm=(f+fc)tm
将式(2)带入式(1):
S
τ
(
f
,
τ
m
)
=
S
p
c
(
f
,
f
c
f
+
f
c
τ
m
)
=
1
∣
μ
∣
r
e
c
t
(
f
B
)
e
x
p
[
−
j
4
π
c
(
f
+
f
c
)
R
0
]
e
x
p
(
−
j
4
π
c
v
τ
m
)
\begin{equation} \begin{aligned} S_τ(f,τ_m)=S_{pc}\left(f,\frac{f_c}{f+f_c}τm\right)\\ =\frac{1}{|μ|}rect\left(\frac{f}{B}\right)exp\left[-j\frac{4π}{c}(f+f_c)R_0\right]exp(-j\frac{4π}{c}vτ_m) \end{aligned} \end{equation}
Sτ(f,τm)=Spc(f,f+fcfcτm)=∣μ∣1rect(Bf)exp[−jc4π(f+fc)R0]exp(−jc4πvτm)
S
τ
(
f
,
τ
m
)
S_τ(f,τ_m)
Sτ(f,τm)的傅里叶逆变换为:
s
τ
(
t
,
τ
m
)
=
B
∣
μ
∣
s
i
n
c
[
B
(
t
−
2
c
R
0
)
]
e
x
p
(
−
j
4
π
c
f
c
R
0
)
e
x
p
(
−
j
2
π
2
f
c
v
c
τ
m
)
=
B
∣
μ
∣
s
i
n
c
[
B
(
t
−
2
c
R
0
)
]
e
x
p
(
−
j
4
π
c
f
c
R
0
)
e
x
p
(
−
j
2
π
f
d
τ
m
)
\begin{equation} \begin{aligned} s_\tau\left(t,\tau_m\right)=\frac{B}{\left|\mu\right|}sinc\left[B\left(t-\frac{2}{c}R_0\right)\right]exp\left(-j\frac{4\pi}{c}f_cR_0\right)exp\left(-j2\pi\frac{{2f}_cv}{c}\tau_m\right)\\ =\frac{B}{\left|\mu\right|}sinc\left[B\left(t-\frac{2}{c}R_0\right)\right]exp\left(-j\frac{4\pi}{c}f_cR_0\right)exp\left(-j2\pi f_d\tau_m\right) \end{aligned} \end{equation}
sτ(t,τm)=∣μ∣Bsinc[B(t−c2R0)]exp(−jc4πfcR0)exp(−j2πc2fcvτm)=∣μ∣Bsinc[B(t−c2R0)]exp(−jc4πfcR0)exp(−j2πfdτm)
其中,
f
d
=
2
f
c
v
/
c
f_d=2f_cv/c
fd=2fcv/c为目标的多普勒偏移。
此时不同的发射脉冲,信号峰值位置始终为
2
c
R
0
\frac{2}{c}R_0
c2R0,它只与初始时刻目标的位置
R
0
R_0
R0有关,而与目标速度
v
v
v以及慢时间
t
m
t_m
tm无关。也就是说,KeyStone 变换把原本位于不同距离单元的回波校正到同一距离单元,补偿了距离走动。
原始回波信号的二维支撑域(慢时间时域—快时间频域)经过KeyStone变换后,会从矩形变为倒梯形(楔形)结构。种形状与建筑拱门顶部的楔石(KeyStone)几何特征一致,“KeyStone 变换” 也正是因其变换结果与楔石的相似性而得名。