Keystone变换(2)Keystone变换

在上一小节“驻定相点原理与脉冲压缩”中我们得到LFM信号沿快时间 t t t的傅里叶变换近似表达式
S p c ( f , t m ) ≈ 1 ∣ μ ∣ r e c t ( f B ) e x p [ − j 4 π c ( f + f c ) ( R 0 + v t m ) ] \begin{align} S_{pc}(f,t_m)≈\frac{1}{|μ|}rect(\frac{f}{B})exp\left[-j\frac{4π}{c}(f+f_c)(R_0+vt_m)\right] \end{align} Spc(f,tm)μ1rect(Bf)exp[jc4π(f+fc)(R0+vtm)]

距离走动的原因在于式(1)的指数项的展开式中包含 f ⋅ v t m f\cdot vt_m fvtm,它表明距离频率域与多普勒域之间存在耦合,当转换为时域时,这种耦合导致了各个脉冲回波的峰值位置彼此不同,因此,作变量代换:
f c τ m = ( f + f c ) t m \begin{align} f_c\tau_m=\left(f+f_c\right)t_m \end{align} fcτm=(f+fc)tm

将式(2)带入式(1):
S τ ( f , τ m ) = S p c ( f , f c f + f c τ m ) = 1 ∣ μ ∣ r e c t ( f B ) e x p [ − j 4 π c ( f + f c ) R 0 ] e x p ( − j 4 π c v τ m ) \begin{equation} \begin{aligned} S_τ(f,τ_m)=S_{pc}\left(f,\frac{f_c}{f+f_c}τm\right)\\ =\frac{1}{|μ|}rect\left(\frac{f}{B}\right)exp\left[-j\frac{4π}{c}(f+f_c)R_0\right]exp(-j\frac{4π}{c}vτ_m) \end{aligned} \end{equation} Sτ(f,τm)=Spc(f,f+fcfcτm)=μ1rect(Bf)exp[jc4π(f+fc)R0]exp(jc4πvτm)

S τ ( f , τ m ) S_τ(f,τ_m) Sτ(f,τm)的傅里叶逆变换为:
s τ ( t , τ m ) = B ∣ μ ∣ s i n c [ B ( t − 2 c R 0 ) ] e x p ( − j 4 π c f c R 0 ) e x p ( − j 2 π 2 f c v c τ m ) = B ∣ μ ∣ s i n c [ B ( t − 2 c R 0 ) ] e x p ( − j 4 π c f c R 0 ) e x p ( − j 2 π f d τ m ) \begin{equation} \begin{aligned} s_\tau\left(t,\tau_m\right)=\frac{B}{\left|\mu\right|}sinc\left[B\left(t-\frac{2}{c}R_0\right)\right]exp\left(-j\frac{4\pi}{c}f_cR_0\right)exp\left(-j2\pi\frac{{2f}_cv}{c}\tau_m\right)\\ =\frac{B}{\left|\mu\right|}sinc\left[B\left(t-\frac{2}{c}R_0\right)\right]exp\left(-j\frac{4\pi}{c}f_cR_0\right)exp\left(-j2\pi f_d\tau_m\right) \end{aligned} \end{equation} sτ(t,τm)=μBsinc[B(tc2R0)]exp(jc4πfcR0)exp(j2πc2fcvτm)=μBsinc[B(tc2R0)]exp(jc4πfcR0)exp(j2πfdτm)

其中, f d = 2 f c v / c f_d=2f_cv/c fd=2fcv/c为目标的多普勒偏移。
此时不同的发射脉冲,信号峰值位置始终为 2 c R 0 \frac{2}{c}R_0 c2R0,它只与初始时刻目标的位置 R 0 R_0 R0有关,而与目标速度 v v v以及慢时间 t m t_m tm无关。也就是说,KeyStone 变换把原本位于不同距离单元的回波校正到同一距离单元,补偿了距离走动。
原始回波信号的二维支撑域(慢时间时域—快时间频域)经过KeyStone变换后,会从矩形变为倒梯形(楔形)结构。种形状与建筑拱门顶部的楔石(KeyStone)几何特征一致,“KeyStone 变换” 也正是因其变换结果与楔石的相似性而得名。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值