TFHE相关记录

1.盲旋转前为什么要将\bar{\mu}=\mu+e 从模q scale 到模2N 

        LWE密文c=(\bold{a},b)\in \mathbb{Z}^{n+1},我们令\bar{\mu}=b-\sum{a_is_i}~mod~q\bar{\mu}^* =b-\sum{a_is_i}。对于一个\mathbb{Z}[X]/X^N+1上的testing polynomial \bold{v}=v_0+v_1x+...+v_{N-1}x^{N-1},如果按照[CGGI20]中盲旋转算法先乘一个X^{-b},然后再迭代乘X^{a_is_i},那么结果会是X^{-\bar{\mu}^*}\cdot \bold{v},而不是我们想要的X^{-\bar{\mu}}\cdot \bold{v}。这时候我想有两种解决办法,一是修改盲旋转算法,每次加上a_is_i的时候都模一个q,这样迭代之后就是\bar{\mu},但是想一下这怎么实现呢?这种想法要求在每一次指数的和超过q时乘上一个X^q,这就要求记录每一次循环结果的实际指数;第二种办法就是原文中的方法,通过scale (\bold{a},b)(\bar{\bold{a}},\bar{b}),使得\bar{\mu}=b-\sum{a_is_i}~mod~2N,这样盲旋转算法旋转了k\cdot 2N+\bar{\mu}位,而X^{k\cdot 2N}=1~mod~X^N+1,所以实际上旋转了\bar{\mu}位,是我们想要的结果。

随时修改....

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值