题目相关
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
T的根结点为R,其类型与串S的类型相同;
若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。
输入格式
第一行是一个整数N(0≤N≤10),
第二行是一个长度为2^N的“01”串。
输出格式
一个字符串,即FBIFBI树的后序遍历序列。
输入输出样例
输入 | 输出 |
---|---|
3 | |
10001011 | IBFBBBFIBFIIIFF |
说明/提示
对于40%的数据,N≤2;
对于全部的数据,N≤10。
题解相关
自己的
思路
- 构建二叉树,通过字符串的子串操作保存子串,并判断FBI关键字
- 后序遍历
- free删除动态分配内存
- 上述三个函数全通过递归函数实现。
问题
- 动态分配有问题,调试不过,卡在刚分配完的语句,应该是分配失败,但是不知道为什么不返回异常。
别人的
第一个
第一次做那么奇怪的问题,因为输入的第一个变量完全多余!其实只需要读一个字符串,然后二分就行了。
学数据结构的时候,二叉树后序遍历可以说是基础问题!只有几行递归代码! 以下代码为链式二叉树遍历函数。
void BinTree::Print(Node *p)//核心函数
{
if(p==NULL)
return;
Print(p->lchild);//访问左子树
Print(p->rchild);//访问右子树
cout<<p->data<<" ";//遍历
}
然后转换成此题就成如此这般了,是不是很像?:)
具体见代码
第二个
递归即可。跟二分查找的思想有点像。想起以前学长跟我说的,很多树的题目事实上根本不用把树建立出来,虽然当时觉得这个思想很惊奇(marvel),但现在自己也算真正的理解了这句话了。
在输入一长串的时候,写 A+1 就能从 A[1] 开始输入了,这很贴合人的语言习惯,但问题是这样就不能使用 strlen 了,所以使用了math 来计算 2 的 n 次
第三个
#本题主要考查树的遍历方法
建树。按照题意是在递归过程中建立树,建树的方法实际上就是树的先序遍历(先根节点,再左右子树)。当本节点长度大于1时递归建立子树。
输出。而输出过程是对树的后序遍历(先左右子树,再根节点),这里有个技巧就是可以和建树过程集成在一起。只需将代码放在递归调用之后就可以了。
判断。最后是判断当前节点的FBI树类型,可以用B(初始值为1)保存全是‘0’的情况,如果遇到‘1’就将B置为0,用I(初始值为1)保存全是‘1’的情况,如果遇到‘0’就将I置为0。最后判断B和I中的值,如果两个都为0则输出F(不全为‘0’,不全为‘1’)。
代码
自己的
#include <iostream>
#include <string>
#include <cstdlib>
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
using namespace std;
typedef struct{
string s;//字符串
char ch;//FBI
}TElem;//二叉树结点类型定义
typedef struct BiTNode{
TElem data;
struct BiTNode *lc, *rc;//左孩子右孩子
}BiTNode, *BiTree;//二叉链表结点的定义
/*
TElem CreateE(string src){
TElem e;
if(src.empty()) {
e.s='\0';
e.ch='N';
}
else {
e.s=src;
if(src.find("0")==src.npos) e.ch='I';
else if(src.find("1")==src.npos) e.ch='B';
else e.ch='F';
}
return e;
}
*/
int CreateT(BiTree &T, string src){
string st=src;
if(src.empty()) T=NULL;
else{
T=(BiTNode*)malloc(sizeof(BiTNode));
if(T==NULL) exit(OVERFLOW);
T->data.s=src;//生成根结点
if(src.find("0")==src.npos) T->data.ch='I';
else if(src.find("1")==src.npos) T->data.ch='B';
else T->data.ch='F';
CreateT(T->lc, src.substr(0,src.size()/2));//构造左子树
CreateT(T->rc, src.substr(src.size()/2));//构造右子树
}
return OK;
}
void PostOrderTraverse(BiTree T)
{
if (T)
{
PostOrderTraverse(T->lc);
PostOrderTraverse(T->rc);
cout<<T->data.ch;
}
}
int ClearT(BiTree &T)
//将二叉树设置成空,并删除所有结点,释放结点空间
{
if(T)
{
ClearT(T->lc);
ClearT(T->rc);
free(T);
T=NULL;
}
return OK;
}
int main()
{
string ip;
cin>>ip;
int jud;
BiTree T=NULL;
jud=CreateT(T,ip);
cout<<jud;
ClearT(T);
return 0;
}
别人的
第一个
#include <iostream>
#include <string>
using namespace std;
char FBI(string s);
int main()
{
int n;
cin >> n;
string s;
cin >> s;
cout << FBI(s);
return 0;
}
char FBI(string s)
{
if (s.length() > 1)
{
cout << FBI(s.substr(0, s.length()/2));
cout << FBI(s.substr(s.length()/2, s.length()/2));
}
if (s == string(s.length(), '0')) return 'B';
if (s == string(s.length(), '1')) return 'I';
return 'F';
}
第一个·改
#include <iostream>
#include <string>
using namespace std;
void FBI(string s);
int main()
{
int n;
cin>>n;
string ip;
cin>>ip;
FBI(ip);
return 0;
}
void FBI(string s){
if(s.size()>1){
FBI(s.substr(0, s.size()/2));
FBI(s.substr(s.size()/2));
}
if(s.find("0")==s.npos) cout<<"I";
else if(s.find("1")==s.npos) cout<<"B";
else cout<<"F";
}
第二个
#include<stdio.h>
#include<math.h>
char A[1025];
void work(int low, int up)
{
int mid = (low+up)/2;
if (low!=up){
work(low, mid);
work(mid+1,up);
}
int i,a=0,b=0;
for (i=low;i<=up;i++)
if (A[i]=='0') a++;
else b++;
if (a&&b) printf("F");
else if (a) printf("B");
else printf("I");
}
int main()
{
int n;
scanf("%d", &n);
scanf("%s", A+1);
work(1, pow(2,n));
return 0;
}
第三个
#include <iostream>
using namespace std;
char s[1050];
void maketree(int x,int y){
if(y>x){
maketree(x,(x+y)/2);
maketree((x+y+1)/2,y);
}
int B=1,I=1;
for(int i=0;i<=y-x;i++){
if(s[x+i]=='1'){
B=0;
}else if(s[x+i]=='0'){
I=0;
}
}
if(B){
cout<<'B';
}else if(I){
cout<<'I';
}else{
cout<<'F';
}
}
int main() {
int n;
cin>>n>>s;
maketree(0,(1<<n)-1);
return 0;
}