Tr A(矩阵快速幂)

Tr A

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input

2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9

Sample Output

2
2686

完整代码:

#include <iostream>
#include<cstring>
typedef long long ll;
using namespace std;
int n;
struct mat              //矩阵结构体
{
    ll a[10][10];
};

mat mat_mul(mat x,mat y)        //矩阵乘法
{
    mat res;
    memset(res.a,0,sizeof(res.a));  
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            for(int k=0;k<n;k++)
            {
                res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%9973;
            }
        }
    }
    return res;
}

mat mat_pow(mat x,int y)        //矩阵快速幂
{
    mat res;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<n;i++)        //构造单位矩阵    
    {
        res.a[i][i]=1;
    }
    while(y)        //y次幂 二进制优化
    {
        if(y&1)
        {
            res=mat_mul(res,x);
        }
        x=mat_mul(x,x);
        y=y>>1;
    }
    return res;
}
/**
函数板子
*/
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int m;
        mat p;
        cin>>n>>m;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                cin>>p.a[i][j];
            }
        }
        p=mat_pow(p,m);
        int ans=0;
        for(int i=0;i<n;i++)
        {
            ans=(ans+p.a[i][i])%9973;
        }
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值