Tr A
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
完整代码:
#include <iostream>
#include<cstring>
typedef long long ll;
using namespace std;
int n;
struct mat //矩阵结构体
{
ll a[10][10];
};
mat mat_mul(mat x,mat y) //矩阵乘法
{
mat res;
memset(res.a,0,sizeof(res.a));
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<n;k++)
{
res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%9973;
}
}
}
return res;
}
mat mat_pow(mat x,int y) //矩阵快速幂
{
mat res;
memset(res.a,0,sizeof(res.a));
for(int i=0;i<n;i++) //构造单位矩阵
{
res.a[i][i]=1;
}
while(y) //y次幂 二进制优化
{
if(y&1)
{
res=mat_mul(res,x);
}
x=mat_mul(x,x);
y=y>>1;
}
return res;
}
/**
函数板子
*/
int main()
{
int t;
cin>>t;
while(t--)
{
int m;
mat p;
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>p.a[i][j];
}
}
p=mat_pow(p,m);
int ans=0;
for(int i=0;i<n;i++)
{
ans=(ans+p.a[i][i])%9973;
}
cout<<ans<<endl;
}
return 0;
}