利用python爬取上证指数股吧评论并保存到mongodb数据库

       大家好,我是带我去滑雪!

       东方财富网是中国领先的金融服务网站之一,以提供全面的金融市场数据、资讯和交易工具而闻名。其受欢迎的“股吧”论坛特别适合爬取股票评论,东方财富网的股吧聚集了大量投资者和金融分析师,他们经常在此分享投资观点、分析报告和市场动态。这些内容对于进行市场情绪分析、投资策略研究或金融模型训练非常有价值。此外,东方财富网的用户基础庞大且活跃,每日都有大量的新帖子和评论产生。这种活跃的讨论环境可以提供实时的市场反馈和投资者情绪的动态变化。相比于其他金融网站,东方财富网的股吧系统更加集中和规范,容易进行数据爬取和分析。每个股票的讨论都有其专属的页面和结构化的评论区,便于自动化工具识别和抽取数据。

       在2022年的时候,我就尝试爬取了东方财富网的股吧评论,链接如下:http://t.csdnimg.cn/F45MZ。但是最近做文本的情感分析时,需要最新的上证指数评论时,再次运行代码,出现了爬取列表为空的问题,后面我查看了东方财富网的网页结构,发现结构已经变化。基于此,本文应运而生,主要解决爬取上证指数股吧评论问题,后续可能会对评论进行数据处理和情感分析。下面开始代码实战。

目录

(1)页面爬取

(2)解析评论信息

(3)保存数据

(4)主函数


(1)页面爬取

from selenium import webdriver
from selenium.webdriver.common.by import By
import time
import random
import pandas as pd
import os
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException

from mongodb import MongoAPI
from parser import PostParser
from parser import CommentParser


class PostCrawler(object):

    def __init__(self, stock_symbol: str):
        self.browser = None
        self.symbol = stock_symbol
        self.start = time.time()

    def create_webdriver(self):
        options = webdriver.ChromeOptions()
        options.add_argument('lang=zh_CN.UTF-8')
        options.add_argument('user-agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, '
                             'like Gecko) Chrome/111.0.0.0 Safari/537.36"')
        self.browser = webdriver.Chrome(options=options)

        current_dir = os.path.dirname(os.path.abspath(__file__))
        js_file_path = os.path.join(current_dir, 'stealth.min.js')
        with open(js_file_path) as f:
            js = f.read()
        self.browser.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", {
            "source": js
        })

    def get_page_num(self):
        self.browser.get(f'http://guba.eastmoney.com/list,{self.symbol},f_1.html')
        page_element = self.browser.find_element(By.CSS_SELECTOR, 'ul.paging > li:nth-child(7) > a > span')
        return int(page_element.text)

    def crawl_post_info(self, page1: int, page2: int):
        self.create_webdriver()
        max_page = self.get_page_num()
        current_page = page1
        stop_page = min(page2, max_page)

        parser = PostParser()
        postdb = MongoAPI('post_info', f'post_{self.symbol}')

        while current_page <= stop_page:
            time.sleep(abs(random.normalvariate(0, 0.1)))
            url = f'http://guba.eastmoney.com/list,{self.symbol},f_{current_page}.html'

            try:
                self.browser.get(url)
                dic_list = []
                list_item = self.browser.find_elements(By.CSS_SELECTOR, '.listitem')
                for li in list_item:
                    dic = parser.parse_post_info(li)
                    if 'guba.eastmoney.com' in dic['post_url']:
                        dic_list.append(dic)
                postdb.insert_many(dic_list)
                print(f'{self.symbol}: 已经成功爬取第 {current_page} 页帖子基本信息,'
                      f'进度 {(current_page - page1 + 1)*100/(stop_page - page1 + 1):.2f}%')
                current_page += 1

            except Exception as e:
                print(f'{self.symbol}: 第 {current_page} 页出现了错误 {e}')
                time.sleep(0.01)
                self.browser.refresh()
                self.browser.delete_all_cookies()
                self.browser.quit()
                self.create_webdriver()

        end = time.time()
        time_cost = end - self.start
        start_date = postdb.find_last()['post_date']
        end_date = postdb.find_first()['post_date']

        row_count = postdb.count_documents()
        self.browser.quit()

        print(f'成功爬取 {self.symbol}股吧共 {stop_page - page1 + 1} 页帖子,总计 {row_count} 条,花费 {time_cost/60:.2f} 分钟')
        print(f'帖子的时间范围从 {start_date} 到 {end_date}')


class CommentCrawler(object):

    def __init__(self, stock_symbol: str):
        self.browser = None
        self.symbol = stock_symbol
        self.start = time.time()
        self.post_df = None
        self.current_num = 0

    def create_webdriver(self):
        options = webdriver.ChromeOptions()
        options.add_argument('lang=zh_CN.UTF-8')
        options.add_argument('user-agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, '
                             'like Gecko) Chrome/111.0.0.0 Safari/537.36"')
        self.browser = webdriver.Chrome(options=options)

        current_dir = os.path.dirname(os.path.abspath(__file__))
        js_file_path = os.path.join(current_dir, 'stealth.min.js')
        with open(js_file_path) as f:
            js = f.read()
        self.browser.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", {
            "source": js
        })

    def find_by_date(self, start_date, end_date):

        """
        :param start_date: '2003-07-21' 字符串格式 ≥
        :param end_date: '2024-07-21' 字符串格式 ≤
        """
        postdb = MongoAPI('post_info', f'post_{self.symbol}')
        time_query = {
            'post_date': {'$gte': start_date, '$lte': end_date},
            'comment_num': {'$ne': 0}
        }
        post_info = postdb.find(time_query, {'_id': 1, 'post_url': 1})  # , 'post_date': 1
        self.post_df = pd.DataFrame(post_info)

    def find_by_id(self, start_id: int, end_id: int):
        """
        :param start_id: 721 整数 ≥
        :param end_id: 2003 整数 ≤
        """
        postdb = MongoAPI('post_info', f'post_{self.symbol}')
        id_query = {
            '_id': {'$gte': start_id, '$lte': end_id},
            'comment_num': {'$ne': 0}
        }
        post_info = postdb.find(id_query, {'_id': 1, 'post_url': 1})
        self.post_df = pd.DataFrame(post_info)

    def crawl_comment_info(self):
        url_df = self.post_df['post_url']
        id_df = self.post_df['_id']
        total_num = self.post_df.shape[0]

        self.create_webdriver()
        parser = CommentParser()
        commentdb = MongoAPI('comment_info', f'comment_{self.symbol}')

        for url in url_df:
            try:
                time.sleep(abs(random.normalvariate(0.03, 0.01)))

                try:
                    self.browser.get(url)
                    WebDriverWait(self.browser, 0.2, poll_frequency=0.1).until(
                        EC.presence_of_element_located((By.CSS_SELECTOR, 'div.reply_item.cl')))
                except TimeoutException:
                    self.browser.refresh()
                    print('------------ refresh ------------')
                finally:
                    reply_items = self.browser.find_elements(By.CSS_SELECTOR, 'div.allReplyList > div.replylist_content > div.reply_item.cl')  # some have hot reply list avoid fetching twice

                dic_list = []
                for item in reply_items:
                    dic = parser.parse_comment_info(item, id_df.iloc[self.current_num].item())

                    dic_list.append(dic)

                    if parser.judge_sub_comment(item):
                        sub_reply_items = item.find_elements(By.CSS_SELECTOR, 'li.reply_item_l2')

                        for subitem in sub_reply_items:
                            dic = parser.parse_comment_info(subitem, id_df.iloc[self.current_num].item(), True)

                            dic_list.append(dic)

                commentdb.insert_many(dic_list)
                self.current_num += 1
                print(f'{self.symbol}: 已成功爬取 {self.current_num} 页评论信息,进度 {self.current_num*100/total_num:.3f}%')

            except TypeError as e:
                self.current_num += 1
                print(f'{self.symbol}: 第 {self.current_num} 页出现了错误 {e} ({url})')  # maybe the invisible comments
                print(f'应爬取的id范围是 {id_df.iloc[0]} 到 {id_df.iloc[-1]}, id {id_df.iloc[self.current_num - 1]} 出现了错误')
                self.browser.delete_all_cookies()
                self.browser.refresh()
                self.browser.quit()
                self.create_webdriver()

        end = time.time()
        time_cost = end - self.start
        row_count = commentdb.count_documents()
        self.browser.quit()
        print(f'成功爬取 {self.symbol}股吧 {self.current_num} 页评论,共 {row_count} 条,花费 {time_cost/60:.2f}分钟')

(2)解析评论信息

from selenium.webdriver.common.by import By
from selenium import webdriver


class PostParser(object):

    def __init__(self):
        self.year = None
        self.month = 13
        self.id = 0

    @staticmethod
    def parse_post_title(html):
        title_element = html.find_element(By.CSS_SELECTOR, 'td:nth-child(3) > div')
        return title_element.text

    @staticmethod
    def parse_post_view(html):
        view_element = html.find_element(By.CSS_SELECTOR, 'td > div')
        return view_element.text

    @staticmethod
    def parse_comment_num(html):
        num_element = html.find_element(By.CSS_SELECTOR, 'td:nth-child(2) > div')
        return int(num_element.text)

    @staticmethod
    def parse_post_url(html):
        url_element = html.find_element(By.CSS_SELECTOR, 'td:nth-child(3) > div > a')
        return url_element.get_attribute('href')

    def get_post_year(self, html):
        driver = webdriver.Chrome()
        driver.get(self.parse_post_url(html))
        date_str = driver.find_element(By.CSS_SELECTOR, 'div.newsauthor > div.author-info.cl > div.time').text
        self.year = int(date_str[:4])
        driver.quit()

    @staticmethod
    def judge_post_date(html):
        try:
            judge_element = html.find_element(By.CSS_SELECTOR, 'td:nth-child(3) > div > span')
            if judge_element.text == '问董秘':
                return False
        except:
            return True

    def parse_post_date(self, html):
        time_element = html.find_element(By.CSS_SELECTOR, 'div.update.pub_time')
        time_str = time_element.text
        month, day = map(int, time_str.split(' ')[0].split('-'))

        if self.judge_post_date(html):
            if self.month < month == 12:
                self.year -= 1
            self.month = month

        if self.id == 1:
            self.get_post_year(html)

        date = f'{self.year}-{month:02d}-{day:02d}'
        time = time_str.split(' ')[1]
        return date, time

    def parse_post_info(self, html):
        self.id += 1
        title = self.parse_post_title(html)
        view = self.parse_post_view(html)
        num = self.parse_comment_num(html)
        url = self.parse_post_url(html)
        date, time = self.parse_post_date(html)
        post_info = {
            '_id': self.id,
            'post_title': title,
            'post_view': view,
            'comment_num': num,
            'post_url': url,
            'post_date': date,
            'post_time': time,
        }
        return post_info


class CommentParser(object):

    @staticmethod
    def judge_sub_comment(html):
        sub = html.find_elements(By.CSS_SELECTOR, 'ul.replyListL2')  # must use '_elements' instead of '_element'
        return bool(sub)

    @staticmethod
    def parse_comment_content(html, sub_bool):
        if sub_bool:
            content_element = html.find_element(By.CSS_SELECTOR, 'div.reply_title > span')
        else:
            content_element = html.find_element(By.CSS_SELECTOR, 'div.recont_right.fl > div.reply_title > span')
        return content_element.text

    @staticmethod
    def parse_comment_like(html, sub_bool):
        if sub_bool:
            like_element = html.find_element(By.CSS_SELECTOR, 'span.likemodule')
        else:
            like_element = html.find_element(By.CSS_SELECTOR, 'ul.bottomright > li:nth-child(4) > span')

        if like_element.text == '点赞':  # website display text instead of '0'
            return 0
        else:
            return int(like_element.text)

    @staticmethod
    def parse_comment_date(html, sub_bool):
        if sub_bool:  # situation to deal with sub-comments
            date_element = html.find_element(By.CSS_SELECTOR, 'span.pubtime')
        else:
            date_element = html.find_element(By.CSS_SELECTOR, 'div.publishtime > span.pubtime')
        date_str = date_element.text
        date = date_str.split(' ')[0]
        time = date_str.split(' ')[1][:5]
        return date, time

    def parse_comment_info(self, html, post_id, sub_bool: bool = False):  # sub_pool is used to distinguish sub-comments
        content = self.parse_comment_content(html, sub_bool)
        like = self.parse_comment_like(html, sub_bool)
        date, time = self.parse_comment_date(html, sub_bool)
        whether_subcomment = int(sub_bool)  # '1' means it is sub-comment, '0' means it is not
        comment_info = {
            'post_id': post_id,
            'comment_content': content,
            'comment_like': like,
            'comment_date': date,
            'comment_time': time,
            'sub_comment': whether_subcomment,
        }
        return comment_info

(3)保存数据

from pymongo import MongoClient


class MongoAPI(object):

    def __init__(self, db_name: str, collection_name: str, host='localhost', port=27017):
        self.host = host
        self.port = port
        self.db_name = db_name
        self.collection = collection_name
        self.client = MongoClient(host=self.host, port=self.port)
        self.database = self.client[self.db_name]
        self.collection = self.database[self.collection]

    def insert_one(self, kv_dict):
        self.collection.insert_one(kv_dict)

    def insert_many(self, li_dict):  # more efficient
        self.collection.insert_many(li_dict)

    def find_one(self, query1, query2):
        return self.collection.find_one(query1, query2)

    def find(self, query1, query2):
        return self.collection.find(query1, query2)

    def find_first(self):
        return self.collection.find_one(sort=[('_id', 1)])
    
    def find_last(self):
        return self.collection.find_one(sort=[('_id', -1)])

    def count_documents(self):
        return self.collection.count_documents({})

    def update_one(self, kv_dict):
        self.collection.update_one(kv_dict, {'$set': kv_dict}, upsert=True)

    def drop(self):
        self.collection.drop()

(4)主函数

from crawler import PostCrawler
from crawler import CommentCrawler
import threading


def post_thread(stock_symbol, start_page, end_page):
    post_crawler = PostCrawler(stock_symbol)
    post_crawler.crawl_post_info(start_page, end_page)


def comment_thread_date(stock_symbol, start_date, end_date):
    comment_crawler.find_by_date(start_date, end_date)
    comment_crawler.crawl_comment_info()


def comment_thread_id(stock_symbol, start_id, end_id):
    comment_crawler = CommentCrawler(stock_symbol)
    comment_crawler.find_by_id(start_id, end_id)
    comment_crawler.crawl_comment_info()


if __name__ == "__main__":
    thread1 = threading.Thread(target=post_thread, args=('zssh000001', 5835, 5875))
    thread1.start()
    thread1.join()
    print(f"成功爬取评论数据!")

输出结果展示:

       成功爬取了495775条评论数据,运行了14个小时,实属不易。后续将会对这个数据集,进行深度的分析。

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/16Pp57kAbC3xAqPylyfQziA?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!

第三方库:snownlp、tushare、pandas、numpy、matplotlib getData:从东方财富网旗下的股吧论坛爬取数据 SQL:用到的数据库操作函数 quantilizeSentiment:量化情绪指数,生成excel文件便于后面进行情绪指数和股票价格涨幅相关度的量化分析(股票价格历史数据来自tusharepro网站,可以免费获取) result:传入某只股票代码,返回情绪指数结果(主要关注此文件即可,其他爬虫分析之类的我后面放到云上,爬取的数据都放入云数据库中) analyze:进行情绪指数和股票价格涨幅相关度分析、数据可视化 爬取后的数据存储在云端数据库中: db = pymysql.connect(host="116.62.46.214",user="dfcf",password="iJHPFZnRjXacNi6p",db="dfcf",port=3306) 接口说明(重点!!!): 函数: def data(share_code):#计算情绪指数 传参:share_code 股票代码(例如:zssh000001)上证指数 返回参数:result 情绪指数 例如: if __name__ == '__main__': result=data('zssh000001') #传入股票代码参数 print(result) #打印情绪指数结果 实现功能:根据传入的股票代码到东方财富网旗下的股吧对应的某股票分论坛爬取当天的用户评论信息,爬取的数据存储到MySQL中,之后再将数据进行统计计算出该股票当天的市场情感趋势。 执行流程 1、输入股票代码 2、清空数据库上一天的评论信息 3、使用爬虫爬取当天东方财富网股吧论坛中该股票的股民评论信息进行数据清洗过滤,筛选出有效信息,存入MySQL数据库 4、使用金融情感计算模型进行文本数据分析 5、得出该股票当日的情绪指数 6、返回情绪指数值 计算情绪指数具体算法实现 借助自然语言处理中的情感分类技术。按照正常的处理流程,需要搭建模型、准备语料库、训练模型、测试模型然后得到一个情感分类的模型。但这里,时间有限,所以直接使用现有的模型。snownlp是一个中文的开源的自然语言处理的Python库,可以进行分词、情感分类等。在本项目中可以直接使用它来量化出某一日市场投资者的整体情绪。量化的方法有许多种,可以将某一日所有的评论情绪得分得分相加再求评价,也可以求某一日情绪得分大于0.5的评论所占的比例。 项目所采用的方法: 将情绪得分>0.6的评论当作积极评论,小于0.4的评论当作消极评论。 设置变量neg和pos,存储某一日市场的积极情绪因子和消极情绪因子。关于neg和pos的计算方法,以neg为例: 初始化为0,若某一日的某一评论comment的情绪得分<0.4 neg=neg+1+log(该条评论的点赞数+该条评论作者的粉丝数+1,2),其中log(x,2)表示以2为低的x的对数。考虑该条评论的点赞数和该条评论作者的粉丝数是因为考虑到不同的评论的质量不同。取对数是为了让数据更加平滑,防止极值过大。+1是为了防止该条评论的点赞数和该条评论作者的粉丝数都为0。 计算某一日市场的总体情绪得分score。设计的模型是: score=log((pos/(pos+neg+0.0001)-0.5)*(该日评论总数+1)) (pos/(pos+neg+0.0001)-0.5)的意思是计算市场的情绪倾向,**大于0表明市场积极情绪情绪较强,越接近0.5越强。小于0反之。**后面的(该日评论总数+1),是因为某一日投资者的评论越多,代表市场投资者情绪的波动越大。
### 关于上证指数股吧评论数据集 东方财富网的上证指数股吧评论数据确实是一个庞大而复杂的资源集合,其中涵盖了众多投资者对于市场动态以及具体股票表现的观点、解析与预期[^1]。此数据不仅能够反映个人投资者的情绪变化,还可能揭示群体行为模式对股市波动的影响。 在特定项目中,“上证指数吧——股评文本情感分析”的文件夹已经收集到了超过四十万条来自上证指数吧的股评记录。通过对这些文本进行自然语言处理技术的应用,可以量化每日情绪指标(BI_index),进而探讨其与实际股指变动之间的关联性[^2]。 为了获取此类数据用于研究或开发目的,通常有几种方法可选: #### 方法一:利用现有公开资源 部分学术机构或者科技公司可能会分享他们整理完成的相关数据库作为开源贡献给社区使用。可以通过搜索引擎查找是否有类似的开放访问权限链接提供下载服务。 #### 方法二:自行构建爬虫程序 如果找不到合适的现成数据源,则考虑编写自己的网络爬虫来抓取所需信息也是一个可行方案。下面给出一个简单的Python脚本例子展示如何从指定URL地址开始提取帖子内容: ```python import requests from bs4 import BeautifulSoup def fetch_posts(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') posts = [] for post in soup.find_all('div', class_='post'): title = post.find('a').text.strip() content = post.find('p').text.strip() posts.append({'title': title, 'content': content}) return posts url = "http://guba.eastmoney.com/list,szzs,f.html" posts_data = fetch_posts(url) for idx, post in enumerate(posts_data[:5]): print(f"{idx+1}. {post['title']}: {post['content']}") ``` 上述代码片段仅作为一个基础框架示例,在真实环境中还需要加入异常处理机制、分页逻辑以及其他细节优化措施才能满足大规模采集需求[^3]。 需要注意的是,在实施任何自动化数据捕获活动之前,请务必仔细阅读目标网站的服务条款,确保操作合法合规;另外也要尊重原始作者版权及相关法律法规规定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带我去滑雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值