题目1:
相似三角形是彼此各边长对应成同比例的两个或更多个三角形。 请根据输入的三条边边长,去掉不能构成三角形者,只保留相似三角形中最前面的一个。
题解
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<double> v(3);
vector<vector<double>> flag(0, vector<long long>(3));
while(scanf("%lfd%lfd%lfd", &v[0], &v[1], &v[2]) != EOF)
{
if(v[0]+v[1]>v[2] && v[0]+v[2]>v[1] && v[1]+v[2]>v[0])
{
int cnt = flag.size();
bool k=true;
for(int i=0; i<cnt; i++)
{
if(v[0]/flag[i][0] == v[1]/flag[i][1] && v[0]/flag[i][0] == v[2]/flag[i][2])
{
k=false;
break;
}
}
if(k)
{
cout<<v[0]<<" "<<v[1]<<" "<<v[2]<<endl;
flag.push_back(v);
}
}
}
return 0;
}
题目2:
贝博士是个大忙人,他在设计和制造一台非常复杂的机械式计算机。 最近贝博士有一点烦恼,因为机械零件的种类繁多,磨损又快,经费不太够用了。不过,他发现有一些机械零件在磨损以后,可以用若干同一型号的磨损旧零件重新回炉熔化以后再铸造出一个该型号的新零件,符合这样的特点的机械零件称为可翻新零件。 于是贝博士请来了他的助手艾小姐,请 她统计一下有多少种型号的可翻新零件,每一种目前有多少存量又能以多少个旧零件重新回炉铸造出一个新零件,要求计算出对应于每一种机械零件他最终能使用的零件个数。
题解:
#include <iostream>
#include <vector>
using namespace std;
int main()
{
long long p, q, s;
cin>>p;
cin>>q;
s=p;
while(p >= q)
{
s+=p/q;
p=p/q+p%q;
}
cout<<s;
return 0;
}