自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 资源 (6)
  • 收藏
  • 关注

原创 题解系列019 + 比赛系列008 | CSDN 第二十三届编程竞赛题解 + 建议

本文是对CSDN第23届竞赛的第 1, 2, 4 题的分析与解答.

2023-01-14 22:00:52 308 1

原创 题解系列018 + 比赛系列007 | CSDN 第二十二届编程竞赛题解 + 建议

本文是对CSDN第22届竞赛的所有问题的分析与解答.

2023-01-14 21:41:15 535

原创 编程笔记001 | C++中的异常机制与 dynamic_cast, const_cast, reinterpret_cast, static_cast 简要总结

本文是笔者在学习 C++ 中异常机制和类型转换中做的总结。内容大部分参考 C++ Primer Plus,但也融入了个人的总结。

2023-01-08 16:47:01 1080 1

原创 题解系列017 + 比赛系列006 | CSDN 第二十一届编程竞赛题解 + 建议

本文是对CSDN第21届竞赛的所有问题的分析与解答,并提出了日后比赛的改进建议。

2023-01-07 21:42:30 288

原创 题解系列016 + 比赛系列005 | CSDN 第十六届编程竞赛题解 + 建议

本文是对CSDN第16届竞赛的第1,2,3题分析与解答。(附第4题参考题解)

2022-12-22 13:45:10 289

原创 题解系列015 + 比赛系列004 | CSDN 第十三届编程竞赛题解 + 建议

CSDN 第十三届编程竞赛的部分题解(第一、二、四题)

2022-12-08 06:46:40 289 2

原创 题解系列014 | 洛谷题解 CF1060D 【Social Circles】

本文是针对洛谷 CF1060D(Social Circles)的题解,并深入浅出地给出了笔者对问题分析的完整过程和推导。本题同时也是第 11 届 CSDN 竞赛的第 4 题。

2022-12-01 21:41:31 163

原创 题解系列013 + 比赛系列003 | CSDN 第十一届编程竞赛题解 + 建议

第十一届 CSDN 编程竞赛的题解 + 建议,将着重分析第四题的思维过程。

2022-12-01 21:35:45 379

原创 Linux001 | 我走过的弯路之二——Ubuntu 22.04 系统中 ‘Temporary failure resolving‘ 解决方案

本文深入浅出地解决了 Ubuntu 22.04 系统中出现 ‘Temporary failure resolving ...’ 的问题。

2022-10-05 17:37:38 6480 3

原创 题解系列012 + 比赛系列002 | CSDN 第五届编程竞赛题解 + 建议

第五届 CSDN 编程竞赛的题解与建议

2022-09-14 12:14:30 327

原创 题解系列011 + 比赛系列001 | CSDN 第四届编程竞赛题解 + 建议

CSDN 第四届编程竞赛的心得与建议

2022-08-26 11:37:15 599 1

原创 Latex003 | 详细教程:搭建 vsCode-LaTeX 环境——如何在 Visual Studio Code 中全流程编写 LaTeX(下篇)

详细介绍了 vscode 中使用 latex workshop 插件的全过程,且成功率极高。

2022-06-18 13:59:42 1045 2

原创 Latex002 | 详细教程:LaTeX 编译器哪个好?——如何在 Visual Studio Code 中全流程编写 LaTeX(上篇)

你是否在编写 LaTeX 过程中遇到了编译器“不给力”,无法自动补全、缩进等问题?本文比较了流行的 LaTeX 的编译器,并简要分析了其优势与不足,最终给出解决方案。

2022-06-16 13:46:09 5286

原创 Latex001 | 我走过的弯路之一——如何让Winedt编译中文内容

问题描述最近我在学习使用 WinEdt 10.3 进行 LaTeX\LaTeXLATE​X 排版的时候,遇到了一个棘手的问题——中文的内容,无论是标题还是正文,都编译不了。! Package inputenc Error: Unicode character 你 (U+4F60)(inputenc) not set up for use with LaTeX.See the inputenc package documentation for explanation

2021-08-10 21:09:59 3659 5

原创 题解系列010 | 洛谷题解 UVa12296 【Pieces and Disc】

原题传送门:Giga Tower一、题意概述【大意】一些线段把矩形分成了多个小多边形,随后给了一个圆,判断其与哪些块有交集(请注意:不一定相交),并求出这些块的面积。【样例分析】其中标阴影部分的就是与圆有交集的块。二、分析显然,本题中点的坐标、以及圆和多边形相交问题,都可以采用解析几何来解决。为此,我们建立一个直角坐标系并计算各图形的方程。唯一需要注意的便是最后判断相交的部分。由于是面与凸多边形相交,因此不能单单判断线段与圆的交点,有以下两种特例:内含(无交点)[外链图片转存失败,源

2021-07-25 21:09:19 179

原创 题解系列009 | 洛谷题解 CF488A 【Giga Tower】

原题传送门:Giga Tower一、题意题目(传送门)给一个绝对值不超过十位的整数,想计算至多加几后会在和数中出现数字 888.二、分析看到这道题,我们最容易想到的当然是暴力枚举,但是首先需要明确这样做所需的执行工作量再开始写。注意到最坏的情况也可以在至多 161616 次内完成(我们看个位就会知道最坏的答案是 161616,也即 −8-8−8 到 888),并且输入的数据位数不超过 101010 位,因此暴力尝试是可行的。三、代码#include <iostream>using

2021-07-18 20:59:37 140

原创 题解系列008 | 洛谷题解 CF127E 【Number With The Given Amount Of Divisors】

原题传送门:Young Photographer一、分析1. 一个正整数的正因子个数计算方法为了解决这道题目,我们首先需要做的当然就是推导出如何计算一个给定正整数的正因子数目。为了达成这一点,我们首先需要知道这一点,即:【算数基本定理】任何一个大于 111 的自然数 NNN ,如果 NNN 不为质数,那么 NNN 可以唯一分解成有限个质数的乘积 N=P1a1P2a2P3a3⋯PnanN=P_1^{a_1}P_2^{a_2}P_3^{a_3}\cdots P_n^{a_n}N=P1a1​​P2a2​​

2021-07-18 20:58:28 197

原创 题解系列007 | 洛谷题解 UVa10891 【Game of Sum】

原题传送门一、题意概要有一个长度为 nnn 的整数序列,两个游戏者 AAA 和 BBB 轮流取数,且均采用贪心算法,求最终双方取出的数的总和之差。二、算法及分析事实上,通过题目中的描述,我们很容易就能看出,在贪心算法这一制约条件下,这题的结果就变成了唯一的(注意:贪心算法 ≠\neq​= 最小差距!),因此可以看作是一道“模拟”题。在做法上,注意到双方都用贪心算法,因此代码实现可以用动态规划实现:开一个动态规划二维数组 dp[105][105]dp[105][105]dp[105][105]

2021-07-18 20:55:23 246

原创 题解系列006 | 洛谷题解 CF14B 【Young Photographer】

原题传送门:Young Photographer一、本题的思路我们先把题目抽象化:给定一堆区间,假如它们交为空,则输出−1-1−1,否则输出一个定点走进这个区间所需的最小距离。这样一来,我们的步骤也变得明确了:1. 读出区间的交集for (int i = 1; i <= n; i++){ cin >> a >> b; start[i] = min(a, b); // 每一个的起点 end[i] = max(a, b); // 终点 if (start[i] &

2021-07-02 21:57:47 179 2

原创 题解系列005 | 洛谷题解 CF794B 【Cutting Carrot】

原题传送门:Cutting Carrot不难看到,本题考查了一些和相似三角形有关的数学知识,在这里,我们先做一些数学上的推导。一、金字塔模型(初中课内内容)1. 相似三角形预备定理如图,在△ABC\triangle ABC△ABC中,B1C1∥BCB_1C_1 \parallel BCB1​C1​∥BC,则△AB1C1∼△ABC\triangle AB_1C_1 \sim \triangle ABC△AB1​C1​∼△ABC2. 推论由相似三角形间的面积关系,我们假设BCB1C1=ABAB1

2021-06-30 18:35:38 238

原创 题解系列004 | 洛谷题解CF1106A 【Lunar New Year and Cross Counting】

原题传送门:Lunar New Year and Cross Counting欣赏完美妙的图案后,我们发现:这题数据很小,可以直接枚举(具体解释就放代码里了):#include <iostream>using namespace std;int main(){ int n, count = 0; char a[501][501]; cin >> n; for (int i = 1; i <= n; i++) for (int j = 1; j <

2021-06-21 16:31:17 91

原创 题解系列003 | 洛谷CF869B 【The Eternal Immortality】

原题传送门:The Eternal Immortality读完题目,我们可以发现这题实质上就是让我们求两个数的阶乘的商模10的余数。但题目中给的数据是0≤a≤b≤10180\leq a\leq b\leq 10^{18}0≤a≤b≤1018,显然直接使用阶乘会直接炸掉(用python也会TLE),因此这种方法直接否决。但是,经过一番观察,我们发现这里a!a!a!和b!(a≤b)b!(a\leq b)b!(a≤b)有很大一部分是“重叠”的,即:b!a!=b⋅(b−1)⋅…⋅1a⋅(a−1)⋅…⋅1=b⋅

2021-06-21 16:21:52 83

原创 题解系列002 | 洛谷CF66B 【Petya and Countryside】

原题传送门:Petya and Countryside由于数据相对比较小,而且是一维情况,因此完全可以暴力枚举。这题唯一需要注意的要点就是搜索的起始点、终止点,以及去重的过程,其它的便无需赘述。上代码:#include <iostream>using namespace std;int main(){ int n; int height[1001], maxsize = 1; cin >> n; for (int i = 1; i &l

2021-06-16 20:27:48 112

原创 数学方法006 | 换元法解决不等式(下)——第三种换元:根据题目条件换元

在许多不等式中,题目都会有明显的换元提示(如xyz=1,xyz=x+y+z,xy+yz+zx=1xyz=1,xyz=x+y+z,xy+yz+zx=1xyz=1,xyz=x+y+z,xy+yz+zx=1),这时候就务必要灵敏地察觉这一条件并根据常见的套路换元。总结下来,可以利用的恒等式有:(左边是恒等式,右边是可以联想到的条件)1.xy⋅yz⋅zx=1=xz⋅yx⋅zy  (abc=1)2.x=a+b,y=b+c,z=c+a  (x,y,z是三角形三边)(以下假设A,B,C是三角形的三个内角)3.tan⁡

2021-01-25 19:37:24 1373

原创 数学方法005 | 换元法解决不等式(中)——第二种换元:利用恒等式进行换元(不常见)

由于在之前提到过恒等式证明不等式的厉害之处,因此这里便再介绍一道可以改用换元解法解决的不等式题。a>0,b>0,c>0,abc=1,求证:a+3(a+1)2+b+3(b+1)2+c+3(c+1)2≥3.a>0, b>0, c>0, abc=1\text{,求证:}\frac{a+3}{\left( a+1 \right) ^2}+\frac{b+3}{\left( b+1 \right) ^2}+\frac{c+3}{\left( c+1 \right) ^2}\ge

2021-01-21 20:10:31 295

原创 数学方法004 | 换元法解决不等式(上)——第一种换元:把题面变得“更好看”

在已经明确展开不可取,并确定有更高效的方法后,应该开始考虑一些技巧方面的处理。除了恒等变形、直接放缩(这些都已在之前提到过),最经典的方法莫过于换元了。有了换元法,往往能把“不整齐”、“不好看”的式子转化为一个轮换式或是一个对称式,从而使之后的解题过程事半功倍。例如下面这个十分不好看的式子,就可以用最基础的换元法来解决:设a,b,c是正实数,求证:8a2+2ab(b+6ac+3c)2+2b2+3bc(3c+2ab+2a)2+18c2+6ac(2a+3bc+b)2≥1.\text{设}a, b, c\te

2021-01-21 20:04:54 702

原创 数学方法003 | “消点法”寻根问祖——面积法解题(下)

还记得前面的那期“面积法解题”吗?->传送门没错,本题面积法只是一种选择,而我则在一开始使用了牛顿线的方法解决了本题。虽不是很漂亮,但还是那句话,在考场上只要能解决问题就行啦!一、牛顿线的证明证明:G,H,E共线⇔GI经过BE中点⇔S△GEI=S△GIB⇔S△GBF+S△GBC=S△GEC+S△GEF⇔12S△BAF+12S△BDC=12S△AEC+12S△DEF⇔S△BAF+S△BDC=S△AEC+S△DEF⇔SABCDFE=SABCDFE.■\text{证明:}G, H, E\text{共

2021-01-21 20:00:59 758 1

原创 数学甜点004 | 全靠“经验”解决一道经典的几何不等式

数学是一门及其高深又变幻莫测的学科,且其根本就是问题的解决,因此是不可能也没有必要去寻找一种能够解决所有问题的通解的。坦白说,研究数学的最大乐趣就是在于发现从来没有人走过的新道路,即一种不同于常规的具有跳跃性,构造性的解法。换句话说,无论是数学家还是数学爱好者,都在寻找这样一种“妙解”。如勾股定理的某些证明方法即是其中之一。归根结底,为了能够实现这种目的,我们就必须要了解如此奇妙的思维是如何激发、训练出来的。不过事实上,尽管这听起来十分困难,但多年的实践告诉我,答案出乎意料地简单——经验。在长期的解答训

2021-01-19 20:30:52 304

原创 数学方法002 | 利用恒等式证明不等式

不等式与恒等式有着密切的联系。将一个恒等式略去一些项或一些因式,就可以产生一个不等式。利用一些完全平方式的和非负的特性,可以产生或证明几乎所有的不等式。但是,不等式的证明仍然比恒等式证明要困难得多,“恒等式一旦写出来,就成为显然的”。不等式,甚至是极简单的不等式,证明起来也可能不那么简单,这是因为我们不知道相应的恒等式。如:n≥3且n为正整数,x1,x2,...,xn>0,x1x2x3⋅⋯⋅xn=1,求证:11+x1+x1x2+11+x2+x2x3+...11+xn+xnx1>1n\ge 3\

2021-01-19 20:21:08 910

原创 数学方法001 | “消点法”寻根问祖——面积法解题(上)

通常来说,题目中会有一些点是我们相当难通过位置关系刻画的(如九点圆圆心,四边形对边中点连线的中点等)。这些时候,就需要转化命题了。通过一系列的倒角、倒边变换,可以消掉一些毫无实际意义的点、线、角,并将其转化为一个常见的问题。这种方法有一个名字——消点法。一般来说,在几何题中,就算是题目中出现了一个中点就已经有一定难度,更何况是两个对边的中点了(很难用中位线去处理)。尽管如此,见多识广的人看到这题必然脱不开与牛顿线(传送门)的联系(其也可以用消点法证明,这在之后也会提到),自然会补全完全四边形。“如无

2021-01-19 20:08:46 2359 3

原创 数学甜点003 | 轮换式、对称式中的变形——从一道“饱受争议”的伊朗数学奥林匹克谈起(2)

x,y,z>0,求证:(xy+yz+zx)⋅[1(x+y)2+1(y+z)2+1(z+x)2]≥94.x,y,z>0,\text{求证:}\left( xy+yz+zx \right) \cdot \left[ \frac{1}{\left( x+y \right) ^2}+\frac{1}{\left( y+z \right) ^2}+\frac{1}{\left( z+x \right) ^2} \right] \ge \frac{9}{4}.x,y,z>0,求证:(xy+yz+zx)

2020-12-21 19:36:28 395

原创 数学甜点002 |轮换式、对称式中的变形——从一道“饱受争议”的伊朗数学奥林匹克谈起(1)

轮换式和对称式说到恒等式变形,还不得不从最基本的轮换式和对称式开始说起。轮换式如果一个多项式中的变量字母按照任何次序轮换后,原多项式不变,那么称该多项式是轮换多项式,简称轮换式。举个例子吧:f(a,b,c)=ab+bc+caf(a,b,c)=ab+bc+caf(a,b,c)=ab+bc+ca如果要说明这个式子是轮换式,那么根据定义,这等价于证明:f(a,b,c)=f(b,c,a)=f(c,a,b)f(a,b,c)=f(b,c,a)=f(c,a,b)f(a,b,c)=f(b,c,a)=f(c,a

2020-12-10 21:44:32 1823 1

原创 数学甜点001 | 数论系列-无穷递降法

揭开庐山真面目今天做题时看到了这样一道题:证明:存在正整数n,使得方程1a+1b+1c+1abc=na+b+c\dfrac {1}{a}+\dfrac {1}{b}+\dfrac {1}{c}+\dfrac {1}{abc}=\dfrac {n}{a+b+c}a1​+b1​+c1​+abc1​=a+b+cn​有无穷多组正整数解(a,b,c)(a,b,c)(a,b,c)。分析这题是本人在学习...

2020-04-30 14:50:37 1704 1

原创 题解系列001 | 洛谷CF466A 【Cheap Travel】

原题传送门:CF466A Cheap Travel题意:AnnAnnAnn需要搭nnn次地铁。她有两种票可供选择:第一种票aaa卢布一张,可以搭一次地铁;第二种票bbb卢布一张,可以搭mmm次地铁。问:AnnAnnAnn最少需要多少卢布才能搭nnn次地铁?输入:一行四个整数:nnn,mmm,aaa,bbb。输出:一行一个整数:AnnAnnAnn搭nnn次地铁最少需要的钱数(以卢布为单位)...

2020-04-21 16:55:44 446

Anti Deep Freeze

Anti Deep Freeze是一款电脑密码相关软件,该工具针对Deep Freeze冰点还原精灵的密码锁定使用,可以有效解除密码,让你顺利卸载这款软件。

2021-01-22

pip20.3.3.zip

pip 是 Python 的包管理器。这意味着它是一个工具,允许你安装和管理不属于标准库的其他库和依赖。 但如果是在官网直接找到的pip,还需要经过一些处理才能使用,这里就直接为大家准备好了,并且版本相对还是较普遍的,欢迎大家下载! 软件包管理极其重要,所以自 Python3 的 3.4 版本以及 Python2 的 2.7.9 版本开始,pip 一直被直接包括在 Python 的安装包内,同样还被用于 Python 的其它项目中,这使得 pip 成为了每一个 Pythonista(Python用户)必备的工具。

2021-01-22

sox-14-4-2.zip

个人曾经尝试过去官网上下载sox,结果由于……(你懂的),下载失败无数次后才下载成功,花了我3小时的时间…… 因此,如果想节省时间或者现在立马就要使用的话,这将成为你的不二之选!

2020-05-02

manim——一款由斯坦福大学高才生开发的专业动画制作软件

这是本人从github上下下来的,需要花费大概1-3小时的时间,如果想节省时间或者现在立马就要使用的话,这将成为你的不二之选!

2020-05-02

MiKTeX官方正版安装包

个人曾经尝试过去官网上下载miktex,结果由于……(你懂的),下载失败三次后才下载成功,花了我1天多的时间…… 因此,如果想节省时间或者现在立马就要使用的话,这将成为你的不二之选!

2020-05-02

FFmpeg便捷下载.7z

ffmeg的便捷下载方式 无需打开官网 下载快速 使用方便 官方版本无病毒 需要的伙伴们快来下载吧!

2020-04-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除