数论——唯一分解定理

本文介绍了如何利用质因数分解来高效地求解一个数的所有因子之和与因子个数,并提供了具体的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Powered by:AB_IN 局外人

我数论这学的是真烂啊。。。
又得借练习赛补老番……

在这里插入图片描述
任意一个大于0的正整数都能被表示成若干个素数的乘积且表示方法是唯一的。这就是唯一分解定理

用于求 因子和因子个数

因子和

模板

//以线性筛为基础

int jet_num[N];//用来记录素数的幂是多少的

ll get_yin_zi_sum(ll n)
{
    ll ans = 1;
    for(int i = 1; (ll) prime[i] * prime[i] <= n; i++){
        if(!(n % prime[i])){
            ll jet = 1, sum = 1;
            while(!(n % prime[i])){
                jet_num[prime[i]]++;
                jet *= prime[i];
                sum += jet;
                n /= prime[i];
            }
            ans *= sum;
        }
    }
    if(n > 1) {
        jet_num[n]++;
        ans *= (n + 1);
    }
    return ans;
}

五十弦翻塞外声

#include <bits/stdc++.h>
#define ll long long
const int N=1e6+5;
int  cnt, prime[N], pre[N];
bool flag[N];

using namespace std;

void init()
{
    memset(flag,1,sizeof(flag));
    flag[1]=cnt=0;
    for(int i=2;i<=N;i++)
    {
        if(flag[i])
        {
            prime[++cnt]=i;
            pre[i]=cnt;
        }
        for(int j=1;j<=cnt&&prime[j]*i<=N;j++)
        {
            flag[prime[j]*i]=0;
            if(i%prime[j]==0)break;
        }
    }
}

ll get_yin_zi_sum(ll n)
{
    ll ans = 1;
    for(int i = 1; (ll) prime[i] * prime[i] <= n; i++){
        if(!(n % prime[i]))
        {
            ll jet = 1, sum = 1;
            while( !(n % prime[i]) )
            {
                jet *= prime[i];
                sum += jet;
                n /= prime[i];
            }
            ans *= sum;
        }
    }
    if(n > 1) ans *= (n + 1);
    return ans;
}

void solve()
{
    ll x;
    scanf("%lld", &x);
    printf("%lld\n", get_yin_zi_sum(x));
}
int t;
int main()
{
    init();
    scanf("%d", &t);
    while(t--){
        solve();
    }
    return 0;
}

n = 12 n = 12 n=12举例

  • i = 1 i = 1 i=1 , p r i m e [ i ] = 2 prime[i] = 2 prime[i]=2 , j e t = 2 jet = 2 jet=2 , s u m = ( 1 + 2 ) sum = (1 + 2) sum=(1+2) , n = 6 n = 6 n=6
  • i = 1 i = 1 i=1 , p r i m e [ i ] = 2 prime[i] = 2 prime[i]=2 , j e t = 4 jet = 4 jet=4 , s u m = ( 1 + 2 + 2 2 ) sum = (1 + 2 + 2^2) sum=(1+2+22) , n = 3 n = 3 n=3
  • 此时(n % prime[i]) != 0,弹出 w h i l e while while, a n s = ( 1 + 2 + 2 2 ) ans = (1 + 2 + 2^2) ans=(1+2+22)
  • i = 2 i = 2 i=2 , p r i m e [ i ] = 3 prime[i] = 3 prime[i]=3 , p r i m e [ i ] 2 > n prime[i]^2 > n prime[i]2>n, 故 b r e a k break break
  • n = 3 > 1 n = 3 > 1 n=3>1, a n s = ( 1 + 2 + 2 2 ) ∗ ( 1 + 3 ) ans = (1 + 2 + 2^2) * (1 + 3) ans=(1+2+22)(1+3)

因子个数

模板

//以线性筛为基础
ll get_yin_zi_num(ll n)
{
    ll ans = 1;
    for(int i = 1; (ll) prime[i] * prime[i] <= n; i++){
        if(!(n % prime[i])){
            ll  cnt = 0;
            while(!(n % prime[i])){
                cnt ++;
                n /= prime[i];
            }
            ans *= (1 + cnt);
        }
    }
    if(n > 1)  ans *= 2;
    return ans;
}
//不以线性筛为基础
ll get_yin_zi_num(ll n){
	ll ans = 1;
	for(ll i = 2; i * i <= n; i++){
		if( !(n % i)){
			ll cnt = 0;
			while(!(n % i)){
				cnt ++;
				n /= i;
			}
			ans *= (1 + cnt);
		}
	}
	if(n > 1) ans *= 2;
	return ans;
}

Vae_1118的行列式

题意是求 a − 1 a- 1 a1的因子个数。

#include <bits/stdc++.h>
#define ll long long
const int N=1e6+5;
int  cnt,prime[N],pre[N];
bool flag[N];

using namespace std;

void init()
{
    memset(flag,1,sizeof(flag));
    flag[1]=cnt=0;
    for(int i=2;i<=N;i++)
    {
        if(flag[i])
        {
            prime[++cnt]=i;
            pre[i]=cnt;
        }
        for(int j=1;j<=cnt&&prime[j]*i<=N;j++)
        {
            flag[prime[j]*i]=0;
            if(i%prime[j]==0)break;
        }
    }
}

ll get_yin_zi_num(ll n)
{
    ll ans = 1;
    for(int i = 1; (ll) prime[i] * prime[i] <= n; i++){
        if(!(n % prime[i])){
            ll  cnt = 0;
            while(!(n % prime[i])){
                cnt ++;
                n /= prime[i];
            }
            ans *= (1 + cnt);
        }
    }
    if(n > 1)  ans *= 2;
    return ans;
}
int t,mod;

void solve()
{
    ll x;
    scanf("%lld", &x);
    printf("%lld\n", get_yin_zi_num(x - 1) % mod);
}

int main()
{
    init();
    scanf("%d%d", &t, &mod);
    while(t--){
        solve();
    }
    return 0;
}

a = 12 a = 12 a=12举例

  • i = 1 i = 1 i=1 , p r i m e [ i ] = 2 prime[i] = 2 prime[i]=2 , c n t = 1 cnt = 1 cnt=1 , n = 6 n = 6 n=6
  • i = 1 i = 1 i=1 , p r i m e [ i ] = 2 prime[i] = 2 prime[i]=2 , c n t = 2 cnt = 2 cnt=2 , n = 3 n = 3 n=3
  • 此时(n % prime[i]) != 0,弹出 w h i l e while while, a n s = ( 1 + 2 ) ans = (1 +2) ans=(1+2)
  • i = 2 i = 2 i=2 , p r i m e [ i ] = 3 prime[i] = 3 prime[i]=3 , p r i m e [ i ] 2 > n prime[i]^2 > n prime[i]2>n, 故 b r e a k break break
  • n = 3 > 1 n = 3 > 1 n=3>1, a n s = ( 1 + 2 ) ∗ 2 ans = (1 + 2 ) * 2 ans=(1+2)2

完结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NEFU AB-IN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值