数论——整数分解

本文探讨了数论中的整数分解问题,重点介绍了积性函数的概念,包括完全积性函数,以及因数和函数的性质。同时,结合费马小定理的应用,讨论了在分解中如何利用这些理论。此外,还详细阐述了试除法以及筛选法(试除plus),这是一种优化的分解策略,旨在减少无关数据处理,提高效率。
摘要由CSDN通过智能技术生成
积性函数:

函数f如果满足对于任意两个互质的正整数m和n,均有f(mn)=f(m)f(n),就称f为积性函数(或乘性函数)。如果对于任意两个正整数m和n,均有f(mn)=f(m)f(n),就称为完全积性函数。

因数和函数:

在这里插入图片描述

费马小定理应用

因数和函数为积性函数,结合费马小定理在这里插入图片描述

试除法

在这里插入图片描述

#include<iostream>
#include<cmath>
using namespace std;
void primeFactor(int n){
   
	//求解n的素因数
	while(n%2==0){
   
		cout<<2<<" ";
		n/=2;
	}
	for(int i=3;i<=sqrt(n*1.0);i+=2){
   
		while(n%i==0){
   
			cout<<i<<" ";
			n/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值