给出一棵二叉树,其上每个结点的值都是 0 或 1 。每一条从根到叶的路径都代表一个从最高有效位开始的二进制数。例如,如果路径为 0 -> 1 -> 1 -> 0 -> 1,那么它表示二进制数 01101,也就是 13 。
对树上的每一片叶子,我们都要找出从根到该叶子的路径所表示的数字。
以 10^9 + 7 为模,返回这些数字之和。
示例:
输入:[1,0,1,0,1,0,1]
输出:22
解释:(100) + (101) + (110) + (111) = 4 + 5 + 6 + 7 = 22
提示:
树中的结点数介于 1
和 1000
之间。
node.val 为 0
或 1
。
C++
class Solution {
public:
int sum = 0;
int sumRootToLeaf(TreeNode* root) {
dfs(root, 0);
return sum;
}
void dfs(TreeNode* root, int n){
if(root == NULL) return;
//把n向左移1位,然后再 按位或(相同位的数字只要有1就为1) 上val.
int val = (n << 1) | root -> val;
if(root-> left == NULL && root -> right == NULL){
sum += val;
}
else{
dfs(root -> left, val);
dfs(root -> right, val);
}
}
};