目录
题目:
给定一个数组arr,返回子数组的最大累加和
例如,arr = [1, -2, 3, 5, -2, 6, -1],所有子数组中,[3, 5, -2, 6]可以累加出最大的和12,所以返回12.
要求:
时间复杂度为O(N),空间复杂度为O(1)
输入描述:
第一行一个整数N。表示数组长度 接下来一行N个整数表示数组内的元素
输出描述:
输出一个整数表示答案
示例1
输入
7 1 -2 3 5 -2 6 -1
输出
12
备注:
1 ≤ N ≤ 10^5 —100 ≤ arr[i] ≤ 100
思路分析:
- 所以设置两个变量cur与max
- cur表示从头开始遍历数组时的当前值
- max表示遍历过程中发现的最大值
- cur向前推进,累加遇到的元素,
- 当累加和小于0时,说明此时一定还没到“L”,
- 那么舍弃当前结果,将累加和置0,接着推进,目标是找L。
- 否则,一直推进,直到推到R,max会保存此时累加和
代码展示:
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main{
public static int findMax(int[] array){
int cur = 0;
int max = Integer.MIN_VALUE;
for(int i=0;i<array.length;i++){
cur += array[i];
max = Math.max(max, cur);
if(cur<0){
cur = 0;
}
}
return max;
}
public static void main(String[] args)throws IOException{
BufferedReader read = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(read.readLine());
int[] array = new int[n];
String[] str = read.readLine().split(" ");
for(int i=0;i<n;i++){
array[i] = Integer.parseInt(str[i]);
}
System.out.println(findMax(array));
}
}
对比另一道题:
这个题目十分简单,关键是掌握向前滑动的思想,
可以对比另一道相似的题,用的是动态规划的思想来解题: