【数字IC验证】
文章平均质量分 82
数字IC通识基础,编码技巧
Wr__
这个作者很懒,什么都没留下…
展开
-
[AIDV] 芯片验证:AI 机器学习在 DV 中的应用及进展
现代硬件设计的功能要求不断增加,这意味着传统的功能验证过程在满足设计上市时间目标方面变得效率低下。大量的事实证明,机器学习 (ML) 模型对于流程主要部分的自动化非常有价值,而这些部分通常占用了工程师的精力;使他们不再需要添加新的覆盖率指标来使设计更加稳健。原创 2024-03-01 23:24:02 · 2294 阅读 · 2 评论 -
【个人思考】数字芯片领域,未来值得投身方向?
这两种芯片已经是芯片界的元老,推荐这两个方向不仅仅是因为它们在消费电子、服务器、云计算等领域有着稳定的出货量,更是因为CPU/GPU作为超大规模的芯片,对个人的技能栈能做非常全面的学习补足。存算一体芯片未来的挑战也颇多,包括计算单元的设计,数据传输路径的优化,对应的软件编译器的部署等。这个方向需要具备数字信号处理、通信协议、射频等方面的知识,具有较高的技术门槛。当然没有十几二十年的学习和经验积累,是搞不定它们的,除此之外,想设计出有市场竞争力的高性能CPU/GPU,光有时间的积累还不够,智商也是要的。原创 2024-01-03 00:32:52 · 360 阅读 · 1 评论 -
【个人思考】IC验证工程师的起源与进化
20年前所需的功能验证技能几乎无法与今天的验证技能相提并论,随着设计和验证变得更加抽象,硬件与固件、软件的实现边界不断移动,以及新技术的采用,这种变化应该被期望。优秀的验证工程师是多年经验的积累。20到30年前,一个优秀的验证工程师了解设计,知道如何构建简单的功能测试计划清单,并在模拟器中大致上进行设计级别的连线,构建能够检测功能故障的模型还能获得额外的加分。衡量一名优秀的验证工程师的最佳指标不是他们给出的答案,而是他们所提出的问题以及提问的速度。今天,一个优秀的验证工程师几乎是一个全知的工程师。原创 2024-01-16 00:43:16 · 412 阅读 · 1 评论 -
【数字IC验证进阶】SystemVerilog的随机稳定性
作为基于约束的随机验证方法的一部分,在ASIC/FPGA开发过程中,每晚会运行一套测试,并且每晚的回归测试都会使用不同的种子运行。这样,每当测试使用不同的随机种子运行时,测试平台中的 $urandom, $urandom_range & (class) randomize()调用会生成不同的随机数,从而导致DUT的不同激励和配置。这些回归测试中的任何测试失败都必须是可复现的,特别是如果失败结果证明是RTL错误。原创 2023-05-25 23:54:26 · 1013 阅读 · 3 评论 -
【SystemVerilog中的浅复制(shallow copy)和深复制 (deep copy)】
俗话说得好:遇事不决问标准,今天回顾问题时,发现对浅复制(shallow copy)和深复制 (deep copy) 的理解不够深入,整理一下标准中对深复制和浅复制的介绍和自己的理解;原创 2023-05-28 23:56:10 · 333 阅读 · 1 评论