目录
5.3 代码(包含IoU、GIoU、DIoU、CIoU、EIoU等)
最近在对损失函数进行改进,对经典的损失函数以及最近学习的损失函数进行梳理
1 IoU
1.1 论文
UnitBox: An Advanced Object Detection Network
1.2 概念及公式
图1 IoU示意图
IoU:交并比,指的是gt(真实框)与预测框交集和并集的比值,示意图见图1,计算公式如下:
其中,A为真实框,B为预测框。
1.3 不足
- 如果两个框不相交,则|A∩B|=0,得到IoU=0,不能反映两者的距离大小
2 GIoU
2.1 论文
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
2.2 概念及公式
图2 GIoU示意图
GIoU示意图如图2所示,公式如下:
其中,A为真实框,B为预测框,C为A和B的最小封闭框。加入后面这一惩罚项,当A和B无交集时,可以反映两个框的距离。
2.3 不足
- 当一个框被另一个框包围时,退化为IoU(|C|=|A∪B|)
3 DIoU
3.1 论文
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
3.2 概念及公式
图3 DIoU示意图
DIoU示意图如图3所示,公式如下:
其中,A为真实框,B为预测框,C为A和B的最小封闭框。ρ²(A,B)为A、B中心点的距离,c为最小封闭框C的对角线长度。
3.3 不足
- 当中心点重合时,退化为IoU
- 没有考虑对宽高的收敛(这一问题前面也有,在这里提一下是因为后面的CIoU和EIoU主要针对这一点提出改进)
4 CIoU
4.1 论文
提出损失函数应考虑三个几何因素,即:1)重叠面积;2)距离;3)纵横比(宽高比)。
4.2 概念及公式
图4 CIoU示意图
CIoU示意图如图4所