二叉树
二叉树的定义
二叉树是有限的结点集合 (递归定义 )
① 这个集合或者是空;
② 或者由一个根结点和两颗互不相交的称为 左子树 和 右子树 的二叉树组成。
二叉树的五种基本形态
二叉树和二次树区别
① 度不同
度为2的树要求每个结点最多只能有两棵子树,并且至少有一个结点有两棵子树。二叉树的要求是度不超过2,结点最多有两个叉,可以是1或者0。
② 分支不同
度为2的树有两个分支,但分支没有左右之分;一棵二叉树也有两个分支,但有左右之分,左右子树的次序不能随意颠倒。
③ 次序不同
度为2的树从形式上看与二叉树很相似,但它的子树是无序的,而二叉树是有序的。即在一般树中若某结点只有一个孩子,就无需区分其左右次序,而在二叉树中即使是一个孩子也有左右之分。
两种特殊的二叉树
满二叉树
在一棵二叉树中:
① 如果所有分支结点都有分支结点;
② 并且叶结点都集中在二叉树的最下一层。
完全二叉树
完全二叉树 实际上是对应的 满二叉树 删除叶结点层最右边若干个节点得到的。
二叉树的性质
性质1
在二叉树的第i层上至多有2^(i-1)个结点(i>=1)。
性质2
深度为k的二叉树至多有2^k-1个结点(k>=1)。
性质3
对任何一颗二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
性质4
具有n个节点的完全二叉树的深度为
性质5
二叉树的存储结构
二叉树的顺序存储结构
① 对于 完全二叉树 来说,期顺序存储是十分合适的。
② 对于 一般的二叉树 ,特别是对于那些单分支结点较多的二叉树来说是很不合适的,因为可能只有少数的存储单元被利用,特别是对退化的二叉树(即每个结点都是单分支的),空间浪费更是惊人。
③ 在顺序存储结构中,找一个结点的双亲和孩子都很容易。
二叉树的链式存储结构
借鉴 树的孩子链存储结构 → 二叉树的链式存储结构
typedef struct{
TElemType data;
struct BiTNode * lchild,* rchild;
}BiTNode,*BiTree;
二叉链存储结构的特点
① 除了指针外,二叉链比较节省存储空间。占用的存储空间与树形没有关系,只与树中结点个数有关。
② 在二叉链中,找一个结点的孩子很容易,但找其双亲不方便。
一棵树采用孩子兄弟链存储结构表示 → 二叉链。
二叉树的遍历
二叉树遍历的概念
二叉树的遍历是指按照一定次序访问树中所有结点,并且每个结点仅被访问一次的过程。
遍历是二叉树最基本的运算,是二叉树其他运算的基础。
二叉树的组成:
1. 先序遍历过程
先序遍历NLR二叉树的过程是:
① 访问根结点;
② 先序遍历左子树;
③ 先序遍历右子树。
2. 中序遍历过程
中序遍历LNR二叉树的过程是:
① 中序遍历左子树;
② 访问根结点;
③ 中序遍历右子树。
3. 后序遍历过程
中序遍历LNR二叉树的过程是:
① 后序遍历左子树;
② 后序遍历右子树;
③ 访问根结点。
二叉树的建立与遍历完整代码
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
typedef char TElemType;
typedef struct BiTNode {
TElemType data;
struct BiTNode* lchild;//左孩子指针
struct BiTNode* rchild;//右孩子指针
}BiTNode,*BiTree;
//先序遍历生成二叉树
void CreateBiTree(BiTree* T) {
TElemType ch;
scanf_s("%c", &ch,1);
if (ch == '#')
*T = NULL;
else {
*T = (BiTree)malloc(sizeof(BiTNode));
if (!*T)
cout<<"内存分配失败!"<<endl;
(*T)->data = ch;
CreateBiTree(&(*T)->lchild);//左子树
CreateBiTree(&(*T)->rchild);//右子树
}
}
//先序遍历二叉树
void PreOrderTraverse(BiTree T) {
if (T == NULL)
return;
printf("%c ", T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
}
//中序遍历二叉树
void InOrderTraverse(BiTree T) {
if (T == NULL)
return;
InOrderTraverse(T->lchild);
printf("%c ", T->data);
InOrderTraverse(T->rchild);
}
//后序遍历二叉树
void PostOrderTraverse(BiTree T) {
if (T == NULL)
return;
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
printf("%c ", T->data);
}
//求树的深度
int BiTreeDeep(BiTree T) {
if (T == NULL)
return 0;
else {
int m = BiTreeDeep(T->lchild);
int n = BiTreeDeep(T->rchild);
if (m > n)
return (m + 1);
else
return (n + 1);
}
}
//求树的结点数
int BiTreeNodeCount(BiTree T) {
if (T == NULL)
return 0;
else
return BiTreeNodeCount(T->lchild) + BiTreeNodeCount(T->rchild) + 1;
}
//求树的叶子点数
int BiTreeLeafCount(BiTree T) {
if (!T)
return 0;
if (!T->lchild && !T->rchild)
return 1;
else
return BiTreeLeafCount(T->lchild) + BiTreeLeafCount(T->rchild);
}
int main() {
BiTree T = NULL;
cout<<"先序遍历生成二叉树:"<<endl;
CreateBiTree(&T);
cout<<"先序遍历:"<<endl;
PreOrderTraverse(T);
cout << endl;
cout<<"中序遍历:"<<endl;
InOrderTraverse(T);
cout<<endl;
cout<<"后序遍历:"<<endl;
PostOrderTraverse(T);
cout<<endl;
int m = BiTreeDeep(T);
cout<<"树的深度为:"<<m<<endl;
int n = BiTreeNodeCount(T);
cout<<"树的结点数为:"<<n<<endl;
int k = BiTreeLeafCount(T);
cout<<"树的叶子点数为:"<<k<<endl;
return 0;
}