力扣 leetcode 300. 最长递增子序列

一、题目描述

**给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。**例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
在这里插入图片描述

二、思路

那必须是暴力匹配法水过去了,哈哈哈哈,想了半天 发现没思路,OK 直接上DP。
1.首先确定DP数组的含义
dp保存着nums第i个数的最大增长子序列的长度dp[i]。
例如 dp[2] = 3 表示nums[:2+1] 这个序列的最大增长子序列的长度是3。
初始值设置啥多少都可以,设置成1 吧。
2.推导式
。。。。。。。。啊啊啊啊啊,推不出来, 笑死。

啊 , 我悟了,第 i 个数应该 要比nums[i]之前的值要小,这样才能是增长序列啊,所以dp[i] = nums[:i](nums[i-1], nums[i-2]…) 的最长的序列且值要比nums[i]要小 在加1就是他的最长序列长度。
在这里插入图片描述

三、代码实现

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        dp = [1] * len(nums)
        for idx, val in enumerate(nums):
            j = idx
            #	找出比 val 小的 且 dp[j]最大的值,
            m = 0
            while j >= 0:
                if nums[j] < val and dp[j] > m:
                    m = dp[j]
                j -= 1
            dp[idx] = m+1
        return max(dp)

早知道选土木就不用遭这罪了,造孽啊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值