数论入门学习

本文详细介绍了质数的概念、判断方法(包括朴素法和优化版)、分解质因数、质数筛法(包括朴素筛、埃氏筛和线性筛)、试除法求解约数、以及约数个数和和的计算。同时涵盖了欧几里得算法的应用。适合初学者理解质数基础及其在编程中的应用。
摘要由CSDN通过智能技术生成

目录

一、什么是质数

二、如何判断质数

1.朴素法(暴力枚举)

2.优化

三、分解质因数

四、质数筛法

1.朴素筛法

2. 埃式筛法

3.线性筛 

五、试除法求解约数

六、约数的个数以及约数之和

七、欧几里得算法(辗转相除法)

总结


一、什么是质数

        质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

        算数基本定理,也叫唯一分解定理。任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积N=P1a1P2a2P3a3......Pnan,这里P1<P2<P3......<Pn均为z质数,其中指数ai是正整数。

二、如何判断质数

1.朴素法(暴力枚举)

        暴力遍历[2,x)之间的所有数字,判断能否整除, 时间复杂度O(n)

bool is_prime(int x) {
    if (x < 2) return false;
    for (int i = 2; i < x; i++) {
        if (x % i == 0) return false;
    }
    return true;
}

2.优化

        对于一个整数n, 如果n整除p, 那么n也整除 n /p, 因此可以将枚举的范围从[0, n]降到[0, \sqrt{n}];时间复杂度O(\sqrt{n})

bool is_prime(int x) {
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i++) {
        if (x % i == 0) return false;
    }
    return true;
}

三、分解质因数

        问题:获取给定的数字n的所有质因数以及质因数的数量;即分解定理中的p和正整数a

void divide(int x) { 
    for (int i = 2; i <= x; i++) {
        if (x % i == 0) { // i一定是一个质数
            int res = 0;
            while (x % i == 0) {
                x /= i;
                res ++;
            }
            cout << i << " " << res << endl;
        }
    }
    cout << endl;
}

        对于 x % i == 0此时的i一定是质数;当处理这段话的时候,x此时一定处理了[2, i - 1]之间的所有质数,即当前x不能被[2, i - 1]中的质数整除;假设i不是质数,那么肯定[2, i - 1]中的某个质数,假设不成立;所以此时 i 一定是一个质数        

        时间复杂度O(n)

- 如何优化?考虑将范围降到[2, \sqrt{n}],  更改循环条件: i <= x / i

        存在结论:至少存在一个质数i >= \sqrt{n} ; 假设存在两个大于\sqrt{n} 的质数的情况,那么这两个数的乘积一定大于n,假设不成立。

void divide(int x) { // logn ~ 根号n之间的时间复杂度
    for (int i = 2; i <= x / i; i++) {
        if (x % i == 0) { // i一定是一个质数
            int res = 0;
            while (x % i == 0) {
                x /= i;
                res ++;
            }
            cout << i << " " << res << endl;
        }
    }
    if (x > 1) cout << x << " 1" << endl; 
    cout << endl;
}

        时间复杂度O(\sqrt{n}), 但是实际上时间复杂度并不会这么高,如果n是2的整数次幂,那么在2的时候n就可以被整除,所以时间复杂度降为O(logn);因此实现的时候,只需要在最后额外判断一次就可以

四、质数筛法

1.朴素筛法

        循环[2, n], 每次将i的整数倍直接筛掉

void attainPrime(int n) {
    // 朴素版
    for (int i = 2; i <= n; i++) {
        if (!vis[i]) primes[res ++] = i; // primes用来记录质数
        // 删掉i的倍数
        for (int j = i + i; j <= n; j += i) vis[j] = true;
    }
}

        当n \to\infty时,筛选次数为\sum ({1/2 + 1/3 + .... + 1/ n}), 调和级数发散,趋近于O(logn)

2. 埃式筛法

        思想:相比于朴素筛,埃式筛法并不是筛掉所有[2, n]数字的倍数,而是仅仅筛掉质数的倍数

将2到n范围内的所有整数写下来。其中最小的数字2是素数。将表中所有2的倍数都划去。表中剩余的最小数字是3,它不能被更小的数整除,所以是素数。再将表中所有3的倍数都划去。依此类推

void attainPrime(int n) {
    // 埃式筛法
    for (int i = 2; i <= n; i++) {
        if (!vis[i]) {
            primes[res ++] = i;
            // 只删除质数的倍数
            for (int j = i + i; j <= n; j += i) vis[j] = true;
        }
    }
}

        时间复杂度O(nlognlogn)

3.线性筛 

        在埃式筛法的思想基础上,每次只用最小质因子删除,保证每个数只被删除一次,这样就将时间复杂度降到了O(n)

void attainPrime(int n) {
    // 埃式筛法
    for (int i = 2; i <= n; i++) {
        if (!vis[i]) {
            primes[res ++] = i;
        }
        // 用最小质因子筛
        for (int j = 0; primes[j] <= n / i; j++) {
            vis[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

算法正确性在于:i % primes[j] (后面使用pj)

        由于pj是从小到大排序的,所以pj一定是当前数的最小质因子

五、试除法求解约数

        如果 d | a, 那么 d / i | a, 因此可以缩小范围

stack<int> st;
    for (int i = 1; i <= x / i; i++) {
        if (x % i == 0) {
            cout << i << " ";
            if (x / i != i) st.push(x / i);
        }
    }
    // i 是从小到大枚举的,所以通过stack将 x / i 逆序
    while (st.size()) {
        cout << st.top() << " ";
        st.pop();
    }

六、约数的个数以及约数之和

        约数个数: 根据唯一分解定理,每一个x都可以分解成质因子的整数次幂的乘积。相应的每一个质因子的整数次幂就是个数,乘积的约数个数就是(a1 + 1)* (a2 + 1) * ... * (an + 1)

    LL res = 1;
    unordered_map<int, int> um;
    while (n --) {
        int x;
        cin >> x;
    
        for (int i = 2; i <= x / i; i++) {
            while (x % i == 0) {
                x /= i;
                um[i] ++;
            }
        }
        if (x > 1) um[x] ++;
    }
    for (auto m : um) {
       res = res * (m.second + 1) % MOD;
    }

        约数之和:根据唯一分解定理,每一个x都可以分解成质因子的整数次幂的乘积。相应的每一个质因子的整数次幂就是个数,乘积的约数之和就是(a1^0 + a1 ^ 1 + ... + a1 ^ n)* (a2^0 + a2 ^ 1 + ... + a2 ^ n)* (an^0 + an ^ 1 + ... + an ^ n)

    LL res = 1;
    unordered_map<int, int> um;
    while (n --) {
        int x;
        cin >> x;
    
        for (int i = 2; i <= x / i; i++) {
            while (x % i == 0) {
                x /= i;
                um[i] ++;
            }
        }
        if (x > 1) um[x] ++;
    }
    for (auto m : um) {
       int p = m.first, number = m.second;
       LL res1 = 1;
       while (number --) res1 = (p * res1 + 1) % MOD;
       res = res * res1 % MOD;
    }

七、欧几里得算法(辗转相除法)

        关键公式:gcd(a, b) = gcd(b, a % b)

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

总结

        emmm,简单整理下质数的学习,判断质数,分解质因子以及几种筛法,数学证明自己也并没完全掌握,希望在整理过程中能够加深理解。书写中还会存在不严谨的地方,还望指正。

        描述的都是一些模板题,我还在初学当中

        题目均来自Acwing官网,可以参考学习 AcWing一个专属于程序员的平台,为大家在漫漫的刷题之旅中,提供最优质的解答https://www.acwing.com/about/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值