- 博客(47)
- 问答 (1)
- 收藏
- 关注
原创 矩阵博弈及其纳什均衡
saddle points鞍点:同时满足某一行的最小值,某一列的最大值就是纯策略的纳什均衡为什么要这样:零和博弈,参与者2的pay与参与者1的相反,所以固定一行,参与者1可以推导参与者2会选择哪个;也就是已经知道对方贪心会选择最利于自己的那个,那么自己的一个有效的做法是使得损失最小两个人都这样,然后交点就是一个纳什均衡混合策略:不知道对方的策略是什么,引入概率让策略变得不可区分也就是让对方猜不到你选什么随机博弈...
2022-04-24 16:54:57
8323
原创 计算机网络第三章
概述数据链路层属于计算机网络的底层,使用的信道主要有以下两种类型:1.点对点信道。2.广播信道。过程比较复杂,广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调。从整个的互联网来看,局域网属于链路层的范围:为什么?因为在网络层要讨论的问题是多个网络互连的问题,是讨论分组怎样从一个网络,通过路由器转发到另一个网络;本章研究的是在同一个局域网中,分组怎样从一台主机到另一台主机,但不经过路由器转发。( 如上图,主机都有完整的五层协议栈,但路由器在转发分组时使用的协议栈只有下边的三层,即数
2022-04-13 20:50:08
2696
原创 拍卖博弈2
回顾密封第二价格拍卖:1.truth-telling策略,即那个dominant strategy。(推导,上一篇文章中的ppt链接中有)(不考虑互相密谋巴拉巴拉那些操作)2.能够给愿意出钱多的竞拍者,即social weafare比较高(将资源给需要的人)一大篇文章看!赢者的诅咒效应赢者的诅咒机制设计一些相关研究1.个体的交互模式影响交互的结果2.系统/机构institution的设计者需要交互结果可控(实现特定目标)3.非直接干涉,通过规则使得个体的激励对齐aligned i
2022-04-13 10:07:58
1037
原创 计算机网络第二章
概述:物理层的任务;几种常用的信道复用技术;几种常用的宽带接入技术重点FTTx(传输媒体本身并不属于物理层的范围)2.1物理层的基本概念物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是具体的传输媒体。**物理层的作用是尽可能的屏蔽掉不同传输媒体和通信手段的差异,使得物理层上边的数据链路层感受不到这些差异;**从而使数据链路层只需要考虑如何完成本层的协议和服务;用于物理层的协议常称为物理层规程(procedure)物理层的主要任务(确定与传输媒体的接口有关的一些特性);物
2022-04-11 17:22:46
2626
原创 计算机网络第一章
书籍概要:计算机网络在信息时代的作用、互联网、互联网组成的边缘部分和核心部分、计算机网络发展、类别、性能指标、计算机网络的体系结构1.1计算机网络在信息时代的作用21世纪的一些重要特征:数字化、网络化、信息化,是一个以网络为核心的信息时代。而网络可以迅速的传递信息,所以非常重要。三类比较熟悉的网络:电信网络、有线电视网络、计算机网络最初:电信网络向用户提供电话、电报及传真服务;有线电视网络向用户传送各种电视结构;计算机网络则使用户能够在计算机之间传送数据文件。随着发展:电信网络和有线电视网络都逐渐
2022-04-06 18:45:45
2483
原创 拍卖博弈入门
拍卖auction总之,拍卖很复杂。卖家有的时候也只是有一个价值估值,然后通过参与者得竞争达成协议;参与者也有一个估值。–一个互相猜疑又想让对方亮底牌又想让对方不得不往自己的坑里跳的过程settings假如你要卖一个神奇的东西,大家并不知道它值多少钱,每一个竞标者都有一个估价。但是大家都互相不知道,我们应该怎么做从而发现价值?:goals大部分拍卖的理性的共同目标:1.最大化利益2.最大化social welfare(防止有的人就是有钱为了垄断)3.公平:比如,也能给穷人一个机会;在某些
2022-04-06 13:32:58
1210
原创 不完全信息古诺模型
上一篇讲的贝叶斯不完全信息博弈的重点其实就是引入了type,以及作为common Knowlegde的概率分布。推广上篇直接将p视为1/2来算的,这次代p,整体思路是一样的:type 1:3,41,04,32,0type 2:6,20,45,1-1,4若参与者选择策略A:p∗3+(1−p)∗1p*3+(1-p)*1p∗3+(1−p)∗1若参与者选择策略B:0+4(p)0+4(p)0+4(p)不完全信息古诺模型回忆下:古诺模型核心:
2022-04-03 21:18:57
3919
2
原创 利用ssh登入服务器
bash安装安装一个支持ssh命令的终端。下载链接:git bash打开git bash,按流程输入:登入ssh -p (端口号)(账号@服务器)然后按照提示输入密码密码修改passwd按要求输入就行了(没有回显)简化登录流程不敲ssh及密码直接登录生成公钥密钥在未登入服务器的状态下:ssh-kegen然后一直按回车,进入~/.ssh目录cd ~/.sshls输出:id_rsa就是私钥,id_rsa.pub是公钥交给远程服务器ssh-copy-id -p
2022-04-01 00:01:21
5358
原创 不完全信息博弈
概念博弈中参与者都有着一些common kowledge(共有知识。)博弈树博弈树介绍(每个参与者在的点称为信息集,每一个“博弈树终端”有各个参与者的收益情况。)完美信息perfect若每一个参与者采取行动时准确的掌握其他人的行动以及在采取行动之前其他参与人的行动,则称该博弈信息是完美信息博弈;是一个关于其他局中人行动的完全知识的状态;下图来源典型例子:国际象棋,围棋,斯坦伯格模型完全信息complete博弈中全部参与者的共同知识是整个博弈的规则、策略及、效用函数等但并不知道对手的动作。
2022-03-30 16:57:34
6123
3
原创 重复博弈reapted games
Reapted Games之前学的基础模型几乎都是静态的(同时决策),除了斯坦伯格模型稍微带了点动态(领导者带领着跟随者)重复博弈有以下特点:1.和同一个人重复进行交互2.动态的持续的例子:借给朋友钱,短期内可能是负收益,但是长期博弈的话,你借他,他以后可能也会帮你,也算是一个重复博弈(不包括那些…的人)重复博弈,a (simultaneous-move)normal-form game(指普通的博弈) is played over and again by the same players.
2022-03-29 20:22:20
2924
原创 斯塔克尔伯格模型
转载原理市场上两个参与者:领头者和跟随着领头者先行决策,跟随着后续决策跟随着因此能看到领头者的决策如:行业领先的企业,或者有较高控制权和优先权的用Backward induction求解,先求解追随者的最优,然后再带回领导者补充实际情况中斯塔尔伯格模型的存在性和唯一性证明非常复杂...
2022-03-23 00:08:27
2127
原创 贝特兰模型
Bertrand模型该模型是法国经济学家Joseph Louis François Bertrand (1822-1900)提出的。与Cournot(古诺)模型相比,在Cournot模型里参加博弈的双方以产量作为决策的变量,而在Bertrand模型中参加该博弈的双方都以价格作为决策变量。这一改变使博弈的市场均衡完全不同于Cournot均衡。它是关于双寡头产商价格竞争的一种模型,会导致每个产商的定价采用完全竞争的情况下的价格,即所谓的边际成本定价法(marginal cost pricing)。Bertr
2022-03-22 23:44:45
2780
原创 一些小杂碎
基环树定义基环树,又叫环套树,特点为n个点n条边,即可以视为树加一个边,拥有一个唯一的环。题型给定n个点n个无向边,给这些无向边设定方向若是非环路径:随便设定方向即可;若是环上路径:需要同时逆时针或者顺时针;如何找环:无向图有向图找环添加链接描述运算符&(按位与)、|(按位或)、^(按位异或)、~ (按位取反)。int与string,char添加链接描述C++ 中的INT_MAX,INT_MIN添加链接描述...
2022-03-19 23:04:00
790
原创 动态规划举例
动态规划将大问题化为若干个小问题,通过小问题的最优解得到大问题的最优解,自底向上的解决问题例子斐波那契数列斐波那契数列是经典的动态规划,这里不再过多介绍了走楼梯问题现共有n个阶梯,A想要从一楼走到二楼,因腿长的限制,她一步可以跨一个或两个阶梯,且只能向上走(即若A正在第x个阶梯上,它可以选择到第x+1或第x+2个阶梯),请问他有多少种方法可以上到实训二楼。思路按照动态规划的思想,首先建立递推关系;定义a[i]为从第0个阶梯到第i个阶梯有多少种方法;那么假如我们现在在第i个阶梯,a[i]之
2022-03-16 23:35:49
125
原创 数论基础入门
一些知识整除自然数a可以被自然数b整除或者说b是a的约数表示的是:a%b=0a\%b=0a%b=0,即a是b的倍数,b是a的约数(不要弄反了),记作b|a。(0是自然数也是整数)质数(素数)和合数指在大于1的自然数中,除了1和它本身不再有其他因数的自然数(如:2,3,5);一个大于1的整数,如果除了1和它本身以外,还有其他的约数,这样的数就叫作合数。素数的分布目前素数的分布还不能确定,但是能够给出一个近似分布,π(n)\pi(n)π(n)为不超过n的质数的个数,π(n)∼nlnn\pi(n)
2022-03-16 20:37:49
843
原创 双寡头古诺竞争模型
简介是经济学模型的一种,古诺模型是由法国经济学家安东尼·奥古斯丁·库尔诺于 1838 年提出的早期的寡头模型。是纳什均衡应用的最早版本,通常被作为寡头理论分析的出发点,也称双头垄断理论。原理设有两个商家生产完全同质的产品,在市场上进行产量竞争,qiq_iqi表示第i个商家的产量,Ci(qi)=ciqiC_i(q_i)=c_iq_iCi(qi)=ciqi为商家i的成本函数,Q=q1+q2Q=q_1+q_2Q=q1+q2为两个商家的产量和,产品价格由市场逆需求函数P(Q)=a−λQ=a−λ(
2022-03-16 10:50:58
9066
原创 组合博弈 SG函数
(给大家安利一部相关电影《美丽心灵~》)石子游戏有若干堆石子,每堆石子的数量有限,合法的移动是选择一堆石子并拿走若干颗(不能不拿),如果轮到某个人时所有的石子都被拿完了,则该人失败。这是一个先手必胜或者必输的组合博弈游戏,具体必胜或是必输取决于石子个数的值定义1.无法进行任何合法移动的局面为P-position(即失败局面)2.可以通过一次合法移动到达P-positon的点为N-position(一次就够了,想赢的人一定会选这个策略的)3.所有合法移动都到达N-position的点(即没有任何
2022-03-14 20:03:49
3462
原创 快速幂(含矩阵)
快速幂题目思路由数据规模,如果暴力惩罚的花,那就是2的31(a的b次方),肯定不行假如是求a的1101(二进制)次方,(以下数都表示二进制)那么可以拆解为a的1次方乘以a的00次方乘以a的100次方乘以a的1000次方代码这种算法将复杂度降低约为logbint main(){ long long a,b,k,ans=1; //数据那么大,记得开longlong cin>>a>>b>>k; if(b==0) { cout<<1%
2022-03-14 10:50:17
338
原创 DFS+BFS
DFS深度优先搜索,类似于树的先序遍历(第一次学DFS是在图中遇到的,那就先回顾下图里的DFS)代码(以邻接表为例)基于邻接表的复杂度为O(n+e),而基于邻接矩阵要O(n方)void DFS_Visit(Graph &G){ for(int i=0;i<G.vexnum;i++) { visit[i]=false;//初始化 } for(int i=0;i<G.vexnum;i++) { if(visit[i]==false) { DFS(G,i
2022-03-14 08:57:47
140
原创 找图中的团
团团的概念可以理解为完全图,即原图的一个完全子图,如果一个团不被其他任一团所包含,即它不是其他任一团的真子集,则称该团为图G的极大团(maximal clique)。顶点最多的极大团,称之为图G的最大团(maximum clique)。最大团问题的目标就是要找到给定图的最大团找团给定一个图,如何找到图中的所有团:(迭代的算法,从可能的最大团开始找)1.将图中节点按照度的大小排序2.该图团的size范围为[最大度+1,1](because 假设图中节点最大度为k,那么只能形成一个size为k+1
2022-03-13 16:09:50
1339
原创 L0、L1、L2、group lasso、trace LASSO范数
范数机器学习模型中,常加入惩罚项(结构风险),防止过拟合。L0范数L0范数指向量中非零元素的个数,直观上来说使用L0范数即想让模型参数为零的元素尽可能的多,或者说是为了参数稀疏。但是L0范数很难求导或者优化。L1范数L1范数指向量中各个元素的绝对值之和,也称“稀疏规则算子”,使用率较高,是L0范数的最优凸近似。补充:任何的规则化算子,如果他在Wi=0的地方不可微,并且可以分解为一个“求和”的形式,那么这个规则化算子就可以实现稀疏。L1范数即符合。L2范数L2范数是向量中各个元素的平方的和,
2022-03-12 19:57:41
4020
原创 金币+小红的ABC+木棍游戏+空调遥控(枚举)
金币思路直接暴力加和就行,到达对应天数时停止代码#include<bits/stdc++.h>using namespace std;int main(){ int k; cin>>k; int sum=0,day=0; for(int i=1;;i++) { for(int j=1;j<=i;j++) { day++; sum+=i;
2022-03-09 17:27:44
4958
2
原创 颜色匹配(贪心)
题目有2n个人参加会议,每个人的衣服都有一种特定的颜色,现在需要把2n个人分成n个大小位2的小组,每个人都在且在一个组里,如果一个小组里两人颜色衣服不同,则成为一个好小组,请问好小组最多有几个?思路获取每种颜色的个数,先对个数最多的颜色进行匹配代码#include<bits/stdc++.h>using namespace std;bool cmp(const int a,cost int b){ return a>b;}int main(){ int n; i
2022-03-08 19:00:47
375
原创 简单任务调度(贪心)
题目有n个模型代码要写,每个模型代码都有一个写的时间和训练的时间,每次只能写一个代码,每个代码写完后就立刻训练,如何安排写代码的顺序,使得所有模型尽早的完成训练。思路将训练的时间从大到小排序,按照这个顺序执行即可思路分析如图,横向的是每个模型写代码需要的时间,纵向是从大到小排序好的每个模型训练的时间。假设第3个模型是最后训练完成的(也就是模型1+模型2+模型3的写代码时间和模型3的训练时间和最大)假如更改执行的顺序,交换模型2和3,那么前三个模型需要的时间变成了(模型1+模型2+模型3的写代
2022-03-08 15:49:04
321
原创 最小新数(贪心)
题目给出一个n位的十进制数字,在其中删掉k个数字(1≤k<n),剩下的数字构成一个新数(顺序不变),求这个新数最小是多少思路容易想到要使数字小,高位最小就行,于是不假思索的以为删掉数字中最大的k个就行,但如果是326,删掉最大的6得到32,并不是最小的数,所以这个题的思路还是要从使高位最小来出发,优先处理高位,可以反过来想,从保留哪个数字的角度出发,在n位的数字中,要删除k个数字,留下n-k个,那么第一个保留的数字必然出现在1~k+1的位置上,超过k+1,就不符合留下n-k个了,所以加上高位最小的思路
2022-03-08 00:05:26
255
原创 极值优化(EO)
由来EO算法是受复杂系统自组织临界进化模型的启发,发展形成的一种启发式只能算法。自组织临界性(SOC)SOC自组织临界现象存在于从自然界到社会经济几乎所有发展变化复杂的系统中,其行为特征满足某种幂函数律。演化到SOC状态的系统都能以一种精密的方式优化对资源的使用。复杂系统复杂系统的行为特点既不是线性的也不是混沌的,而是一种处在稳态和混沌的边界处的临界自组织状态,在较大的时间跨度范围内,复杂系统的低频功率谱表现的行为符合指数规则,即事件对系统的影响程度和时间的发生频率f成反比,复杂系统的大部分组
2022-03-02 21:03:06
1664
原创 Haywire(模拟退火)
TSP问题旅行商问题(Traveling Salesman Problem),假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。解对于TSP问题,一个解决方案就是遍历不同的排列顺序,采用模拟退火算法,在产生新解时可以随机选取两个节点,然后交换位置(看起来还是很暴力,但是效果确实不错);需要明确的时,模拟退火算法虽然相对一些方法来说更容易跳出局部最优,但还是不能保证得到的结果
2022-03-02 10:49:42
398
原创 01分数规划+二分法
基本01分数规划问题来源给定n个二元组(value,cost),value是选择此二元组获得的价值(非负),cost是选择此需要的代价,x表示选或者不选(0为不选,1为选),最大化下式:max(ormin)r=∑valuei∗xIcosti∗ximax(or min) r=\frac{\sum value_i*x_I}{cost_i*x_i}max(ormin)r=costi∗xi∑valuei∗xI最大化的方法首先从图像角度分析下,设r最大值为r∗r^*r∗,r∗=∑valuei∗
2022-02-28 00:13:41
219
原创 二分法和STL
为什么二分假设每次取的是最左边的一个k等分点,那么在检测之后区间大小可能变成原来的1/k或者1-1/k,假设在查找范围中的数的分布是绝对均匀的,那么区间变成1/k的概率是1/k.同样,变成1-1/k的概率为1-1/k,那么检测之后期望的区间长度为:range∗(2/k2−2k+1)range*(2/k^2-\frac{2}{k}+1)range∗(2/k2−k2+1)这是个二次函数 ,当k=2时,取最小值代码前提:数组有序这里假设为非递减数组low=1;high=n;while(low&
2022-02-27 20:20:39
146
原创 指纹索(set)
题目描述HA实验有一套非常严密的安全保障体系,在HA实验基地的大门,有一个指纹锁。该指纹锁的加密算法会把一个指纹转化为一个不超过1e7的数字,两个指纹数值之差越小,就说明两个指纹越相似,当两个指纹的数值差≤k时,这两个指纹的持有者会被系统判定为同一个人。现在有3种操作,共m个,操作1:add x,表示为指纹锁录入一个指纹,该指纹对应的数字为x,如果系统内有一个与x相差≤k的指纹,则系统会忽略这次添加操作操作2:del x,表示删除指纹锁中的指纹x,若指纹锁中多个与x相差≤k的指纹,则全部删除,若
2022-02-27 16:46:08
198
原创 吐泡泡(栈)
题目描述小鱼儿吐泡泡,嘟嘟嘟冒出来。小鱼儿会吐出两种泡泡:大泡泡"O",小泡泡"o"。两个相邻的小泡泡会融成一个大泡泡,两个相邻的大泡泡会爆掉。(是的你没看错,小气泡和大气泡不会产生任何变化的,原因我也不知道。)例如:ooOOoooO经过一段时间以后会变成oO。输入描述:数据有多组,处理到文件结束。每组输入包含一行仅有’O’与’o’组成的字符串。输出描述:每组输出仅包含一行,输出一行字符串代表小鱼儿吐出的泡泡经过融合以后所剩余的泡泡。示例输入:ooOOoooO输出:oO思路感
2022-02-26 11:55:07
509
1
原创 younik要排号(set)
题目描述Younik挂好号之后,就去找医生了。但是她没想到,看医生居然也要排队!于是younik可怜兮兮地站在大厅里,盯着墙上的显示屏,显示屏会不停地打出名字,如果一个人被叫到但没进去,显示屏可能会叫他很多次。你能告诉younik她是第几个被叫到的人吗?Ps.如果一个人被叫了两次,他还是一个人,不能算两个人。(题目数据范围为200)输入描述:第一行是一个正整数n,表示显示屏会叫几次。接下来n行,每行都是一个名字。输出描述:一个正整数,表示younik是第几个被叫到的人。不需要换行。示例
2022-02-26 11:18:51
659
原创 拼数(string类)
题目描述设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数。例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213又如:n=4时,4个整数7,13,4,246联接成的最大整数为:7424613输入格式第一行,一个正整数n。第二行,n个正整数。输出格式一个正整数,表示最大的整数样例输入313 312 343输出34331213思路显而易见,最高位数大的数排在前边考虑用string类:string 类的设计允许程序自动处理 strin
2022-02-26 10:58:24
386
原创 装进肚子(贪心)
题目描述自从xxx吃完糖果后,他又开始改吃巧克力了,他每天想吃n个巧克力增加甜蜜值,他决定早上吃K个,晚上吃n-K个,每个巧克力在早上吃和在晚上吃的甜蜜值是不一样的,他想得到最大甜蜜值,并想知道最大的是多少输入描述第一行包含两个数n,K表示每天要吃的巧克力数量和要在早上吃的数量。(n <= 100000, K <= n)第二行包含n个整数Ai(1 <= i <= n) 表示个第i个巧克力在早上吃可得到的甜蜜值 (Ai <= 100000)第三行包含n个整数Bi(1 &
2022-02-25 16:28:24
354
原创 STL(凑字数)
万能头#include<bits/stdc++.h>STL标准库standard template libraryC++自带的函数库,包含一些可以直接使用的类或者函数,如:sort,string,vector,list,map,set,queue,priority_queue,stack,pair等template自适应类型template<class T>void swap(T &a,T&b){ T=a; a=b; b=c;}sort
2022-02-25 10:13:36
482
原创 topic model(LDA 主题模型)
LDA简介在老师讲主题模型的时候看到这个LDA,刹时觉得很熟悉,在机器学习中,其实有两个LDA,一个是平时接触比较多的Linear Discriminant Analysis即线性判别分析,另一个便是这篇文章的主角Latent Dirichlet Allocation即隐含狄利克雷分布。提出目的用于推测文档(document)的主题分布,以及主题(topic)的词(word)分布;换个角度来说其实这个模型解决了文档和词汇的软聚类,即文档的主题分布概率可以当作文档聚类的指标,而词汇则归属于其隶属的主题而
2021-11-19 20:41:13
2108
原创 EM(期望最大)算法
前言从机器学习到模式识别,已经遇到了很多次EM算法,但是好像并没有真正的理解,本篇文章将从浅到深,从通俗的语言到数学推导来讲解这个算法。(这里默认大家都已经掌握了极大似然的思想)简介EM算法(Expectation-maximization algorithm),期望最大算法,是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。EM算法经过两个步骤交替进行计算:计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;最大化(M),最大化在
2021-11-19 18:43:21
1478
原创 Python flask框架(6)
模板变量在上一篇文章的最后简单介绍了下如何通过模板渲染传递int类型的参数,下文将介绍其他类型的如何传递。列表@app.route('/showusers')def show(): name='tuantuan' #j=json.dumps(users) friends=['沈巍','面面','龙龙'] return render_template('show.html',name=name,friends=friends)<body><di
2021-11-19 15:40:10
397
原创 Python flask框架(5)
小结复习(1)-(4)感觉迷迷糊糊的,这里小结一下分别都讲了啥:(1)一些基础的概念;(2)IP等概念+基础的实现(3)http状态码+路由变量规则+视图函数return+部分响应(4)request+response+模板渲染小结测试实现一个add功能app=Flask(__name__)app.config.from_object(config)#是可以传多个数的@app.route('/add/<int:a1>/<int:a2>')def add(a1,
2021-11-16 00:29:09
661
原创 Python flask框架(4)
response & request请求响应补充&实例化展示responseview函数的返回值必须为一个reponse对象Response类属性介绍:headers : 请求头,status ;String类型状态码,如:“200 ok”;status_code : int 类型,状态码;data : 需要返回到前端的数据;set_cookie :设置cookie ;del_cookie :删除cookie ;cookie:Cookie是保存在客户端的纯文本文
2021-11-15 01:09:51
869
空空如也
eclipse安装了AmaterasUML插件后创建类图文件的时候finish点不了
2021-11-30
TA创建的收藏夹 TA关注的收藏夹
TA关注的人