2020蓝桥杯模拟省赛模拟赛题目及代码记录,若有错误欢迎指正!
因为赛后没分数啥的也不知道哪道题对哪道题不对,只能靠做的时候的感觉所以可能会有疏漏。
1.填空题
易知为2018
2.填空题
因为有两个字母重复,所以答案为7!/ 2 = 2520
3.填空题
4对括号,可以枚举共有14种情况,也可以递归
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
ll n,ans,total;//total表示要排的几对括号
vector<char> v;
void Permu(int sum,int l,int r) {//剩余待排列括号数 已经排好的括号数
if(l < r) return; //先排左括号再排右括号,且右括号一定是与左括号匹配的
//所以左括号只能>=右括号
if(sum == 0) {
ans++;
vector<char>::iterator it;
for(it = v.begin(); it != v.end(); it++) {
cout << *it;
}
cout << endl;
}
if(l < total) {
v.push_back('(');
Permu(sum-1,l+1,r);
v.pop_back();
}
if(r < total) {
v.push_back(')');
Permu(sum-1,l,r+1);
v.pop_back();
}
}
int main() {
cin >> total;
Permu(total*2,0,0);
cout << ans << endl;
return 0;
}
4.填空题
送分,12.5 *1024 *1024 = 13107200
5.编程题
字符串处理,防止溢出对26取余就好
#include <iostream>
#include <string>
#define div 1000000007
typedef long long ll;
const int maxn = 100;
using namespace std;
string s;
int main() {
cin >> s;
int len = s.length();
for (int i = 0; i < len; i++) {
s[i] = 'a' + (s[i]-'a'+3)%26;
}
cout << s << endl;
return 0;
}
6.编程题
O(n)复杂度应该能过所有样例……大概
#include <iostream>
#include <string>
#define div 1000000007
typedef long long ll;
const int maxn = 1000000;
using namespace std;
ll n, a, b, c, ans;
int main() {
cin >> n;
cin >> a >> b >> c;
for (int i = 1; i <= n; i++) {
if(i % a != 0 && i % b != 0 && i % c != 0) {
ans++;
}
}
cout << ans << endl;
return 0;
}
7.编程题
跟校内模拟赛那道题挺像,用了记忆化递归,样例能过,且速度应该能过80%,如有逻辑漏洞还请指正。
问题描述
如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
输入格式
输入一行包含两个整数 m,n。
输出格式
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
样例输入
3 4
样例输出
14
样例说明
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
评测用例规模与约定
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。
#include <iostream>
#include <cstring>
#define div 10000
typedef long long ll;
const int maxn = 1000000;
using namespace std;
int n, m;
ll ans;
int rem[101][101][101];
ll dfs(int m,int l, int r){
//长度为 m,每个数都是 l 到 r 之间的正整数的摆动序列一共有多少个
if(rem[m][l][r] != -1) return rem[m][l][r];
if(l > r) {
rem[m][l][r] = 0;
return rem[m][l][r];
} else if(l == r) {
rem[m][l][r] = 1;
return rem[m][l][r];
} else if(m == 1) {
rem[m][l][r] = r-l+1;
return rem[m][l][r];
}
if(m % 2 == 0) {//偶数项都比前一项小 则前一项只能在i~r
for(int i = l; i <= r; i++) {
ans = (ans + dfs(m-1,i+1,r)) % div;
}
} else {//奇数项都比前一项大 则前一项只能在l~i
for(int i = l; i <= r; i++) {
ans = (ans + dfs(m-1,l,i-1)) % div;
}
}
rem[m][l][r] = ans%div;
return rem[m][l][r];
}
int main() {
memset(rem,-1,sizeof(rem));
cin >> m >> n;
cout << dfs(m,1,n) << endl;
return 0;
}
8.编程题
螺旋矩阵,知道最大走多少步就好办了,顺序是右、下、左、上这样
问题描述
对于一个 n 行 m 列的表格,我们可以使用螺旋的方式给表格依次填上正整数,我们称填好的表格为一个螺旋矩阵。
例如,一个 4 行 5 列的螺旋矩阵如下:
1 2 3 4 5
14 15 16 17 6
13 20 19 18 7
12 11 10 9 8
输入格式
输入的第一行包含两个整数 n, m,分别表示螺旋矩阵的行数和列数。
第二行包含两个整数 r, c,表示要求的行号和列号。
输出格式
输出一个整数,表示螺旋矩阵中第 r 行第 c 列的元素的值。
样例输入
4 5
2 2
样例输出
15
评测用例规模与约定
对于 30% 的评测用例,2 <= n, m <= 20。
对于 70% 的评测用例,2 <= n, m <= 100。
对于所有评测用例,2 <= n, m <= 1000,1 <= r <= n,1 <= c <= m。
#include <iostream>
#include <cstring>
#define div 10000
typedef long long ll;
const int maxn = 1000000;
using namespace std;
int n, m;
int k = 1;
int a[105][105];
int main() {
cin >> n >> m;
int all = n*m;
int r=1, c=1;//行 列
a[r][c] = k;
while(k < all) {//进行上下左右的判断
while(c+1 <= m && !a[r][c+1]) {//当右边没走过且未出界时 向右走
a[r][++c] = ++k;
}
while(r+1 <= n && !a[r+1][c]) {//当下边没走过且未出界时 向下走
a[++r][c] = ++k;
}
while(c-1 >= 1 && !a[r][c-1]) {//当左边没走过且未出界时 向左走
a[r][--c] = ++k;
}
while(r-1 >= 1 && !a[r-1][c]) {//当上边没走过且未出界时 向上走
a[--r][c] = ++k;
}
}
cin >> r >> c;
cout << a[r][c] << endl;
return 0;
}
9.编程题
暂未解决
问题描述
小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
输入格式
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
输出格式
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
样例输入
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
样例输出
12
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。
10.编程题
其实就是最小生成树,现学了Prim算法,在最后几分钟才交的卷,样例能过,有没有bug暂未测出
问题描述
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
sqrt((x_1-x_2)(x_1-x_2)+(y_1-y_2)(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
输入格式
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
输出格式
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
样例输入
4
1 1 3
9 9 7
8 8 6
4 5 4
样例输出
17.41
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。
#include <iostream>
#include <cstring>
#include <cmath>
#define div 10000
typedef long long ll;
const int maxn = 1000;
const int INF = 0x3f3f3f;
using namespace std;
int n, m;
struct Village{
int x,y,h;
} v[maxn];
double edge[maxn][maxn];
int fa[maxn];//fa[i]表示已加入的V中里该点最近的点编号
int vis[maxn];//该点是否已访问过
double dist[maxn];
double ans;
//sqrt((x_1-x_2)*(x_1-x_2)+(y_1-y_2)*(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
void init() {
for(int i = 2; i <= n; i++) {
dist[i] = edge[1][i];
}
fa[1] = -1;
vis[1] = 1;收录初始点1
}
double Prim() {
init();
for(int i = 2; i <= n; i++) {
int min = INF;
int v = -1;
for(int j = 2; j <= n; j++) {
if(!vis[j] && dist[j] < min) {
min = dist[j];
v = j;
}
}
if(v != -1) {//找到了最小的~收入V
vis[v] = 1;
ans += dist[v];
for(int j = 2;j <= n; j++) {//更新距离dist
if(!vis[j] && edge[v][j] < dist[j]) {
dist[j] = edge[v][j];
fa[j] = v;
}
}
}
}
return ans;
}
int main() {
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> v[i].x >> v[i].y >> v[i].h;
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(i == j) continue;
double d = sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y))
+(v[i].h-v[j].h)*(v[i].h-v[j].h);
edge[i][j] = edge[j][i] = d;
}
}
double ans = Prim();
printf("%.2f",ans);
return 0;
}
总结
此次模拟赛真实水平应该是8题上下,最后一题由于是现学的最小生成树所以并不算熟练,打算去多刷下这类题目,抓紧学习图论。