有n堆石子围成一个圆型,每堆石子数量分别为a1,a2…an(从a1到an围成一圈,an与a1相邻)现在要将这n堆石子合并成一堆,每次只能合并相邻的两堆,每次合并的得分是这两堆石子的数量之和,计算这n堆石子合并成一堆的最小得分。
Input
多组输入
每组数据第一行输入n . 1<=n<=1000
第二行输入n个正整数 a1到an,代表每堆石子的数量。 ai<=1000
Output
每组数据输出最小得分
Sample Input
3
1 2 3
8
5 2 4 7 6 1 3 9
Sample Output
9
105
说明
第一组样例 最优策略是:先合并 1和2,得分是3,然后还剩两堆石子,数量分别为 3,3.然后合并这两堆,得分为6. 两次合并总分是9
**与直线型的区间dp不同,这道题要进行四边形的优化。在查找最优分割点的时候,我们浪费了大量时间。那么我们可以把最优分割点保存下来,在查找的时候利用保存的最优分割点来优化查找过程。对长度进行遍历转化成对数组进行遍历 **
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<map>
#include<stack>
#include<set>
#include<queue>
#include<vector>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int m