nn.LayerNorm的参数

本文详细解读了PyTorch中nn.LayerNorm的功能,包括参数设置(如normalized_shape和eps)、计算过程(针对不同维度的处理),以及如何在实际中使用,特别强调了权重和偏置的学习。通过实例演示了如何对张量进行归一化和仿射变换。

nn.LayerNorm的参数:

参考:
1、pytorch LayerNorm参数详解,计算过程
2、nn.LayerNorm的具体实现方法(通过公式复现)

normalized_shape

如果传入整数,比如4,则被看做只有一个整数的list,此时LayerNorm会对输入的最后一维进行归一化,这个int值需要和输入的最后一维一样大。

假设此时输入的数据维度是[3, 4],则对3个长度为4的向量求均值方差,得到3个均值和3个方差,分别对这3行进行归一化(每一行的4个数字都是均值为0,方差为1);LayerNorm中的weight和bias也分别包含4个数字,重复使用3次,对每一行进行仿射变换(仿射变换即乘以weight中对应的数字后,然后加bias中对应的数字),并会在反向传播时得到学习。
如果输入的是个list或者torch.Size,比如[3, 4]或torch.Size([3, 4]),则会对网络最后的两维进行归一化,且要求输入数据的最后两维尺寸也是[3, 4]。

假设此时输入的数据维度也是[3, 4],首先对这12个数字求均值和方差,然后归一化这个12个数字;weight和bias也分别包含12个数字,分别对12个归一化后的数字进行仿射变换(仿射变换即乘以weight中对应的数字后,然后加bias中对应的数字),并会在反向传播时得到学习。
假设此时输入的数据维度是[N, 3, 4],则对着N个[3,4]做和上述一样的操作,只是此时做仿射变换时,weight和bias被重复用了N次。
假设此时输入的数据维度是[N, T, 3, 4],也是一样的,维度可以更多。
注意:显然LayerNorm中weight和bias的shape就是传入的normalized_shape。

eps

归一化时加在分母上防止除零。

elementwise_affine

如果设为False,则LayerNorm层不含有任何可学习参数。

如果设为True(默认是True)则会包含可学习参数weight和bias,用于仿射变换,即对输入数据归一化到均值0方差1后,乘以weight,即bias。

torch.nn.LayerNorm(
        normalized_shape: Union[int, List[int], torch.Size],
        eps: float = 1e-05,
        elementwise_affine: bool = True)
import t
nn.LayerNorm()函数有三个参数:normalized_shape、eps和elementwise_affine。 normalized_shape是一个表示输入张量的形状的参数,可以是一个整数、一个列表或一个torch.Size对象。它指定了输入张量的维度,用于计算均值和方差。 eps是一个小的正数,用于防止分母为零。它用于计算标准差,避免除以零的情况。 elementwise_affine是一个布尔值参数,指定是否对每个通道应用可学习的仿射变换。如果为True,就会学习并应用每个通道的缩放和偏移,如果为False,则不会应用。 请注意,由于LayerNorm不会跟踪全局的均值和方差,因此train()和eval()对LayerNorm没有影响。 LayerNorm中的权重和偏置的形状与传入的normalized_shape相同。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [LayerNorm](https://blog.csdn.net/ac540101928/article/details/112601665)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Pythorch中torch.nn.LSTM()参数详解](https://download.csdn.net/download/L_goodboy/85230334)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

焦一狄

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值