Acwing4196. 最短路径
很好的一个dijkstra的模板题。
noteworthly的点
1.memset(dis,0x3f,sizeof(dis))初始化的dis如果是long long类型,则填充为0x3f3f3f3f3f3f3f3f 8个3f。如果dis 是int类型,则填充为0x3f3f3f3f四个3f
2.优先队列的写法
这里优先队列的排序是按照pair的first来排的,greater< PII >是小根堆
//有两个变量的优先队列:first是源点到某i点的距离,second 是源点到的某i点,
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII>> //greater是小顶堆 less<PII>是大顶堆
3.dijkstra本身可以处理自环和重复边。如果有自环,张弛操作不会进行。假设当前优先队列队首是一个环i->i;那么源点到i已经有一个距离就是dis[i]了,而张弛的是dis[i]和dis[k] + e[j].w,这里的k就是i(因为是环)所以不会张弛。
即使是其他点也不受影响。因为源点到i的距离dis[i]都没有受环的影响,则后面i到其他点的距离的张弛是+dis[i]的,所以也不受环的影响
自环和重边不影响dijkstra算法的正确性
4.如何判断不行?
求的是从1到n的距离,如果n的距离还是无穷大说明没有走到n,依据
dis[n]==inf, inf = 0x3f3f3f3f3f3f3f3f来判断是否有解
5.关于堆优化:
堆优化进去的一个结构体or pair,包含结点和源点到该节点的距离。对某一个点设为 x 的松弛操作进行了之后,优先队列里的原来的大的距离并没有变, 此时x并不是整个队列里最小的(即不是队首),所以vis[x] = 0,这个时候就可以把x更新的距离更新入队。永远不会访问到原来的大的距离了,访问到也是visted了然后continue。continue非常重要,有了continue后面更新了的访问了前面距离大的就不会访问了。
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int N = 1e5+10;
priority_queue<PII,vector<PII>,greater<PII>> q;
ll dis[N];
int vis[N];
int head[N];
int pre[N];
int res[N];
int n,m;
int cnt=0;
struct edge{
int to,w,next;
}e[N];
void add(int u,int v,int w)
{
e[cnt].next=head[u];
e[cnt].w=w;
e[cnt].to=v;
head[u]=cnt++;
}
void Init()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
for(int i=0;i<N;i++) head[i] = -1;
}
void dijkstra(int u)
{
dis[u] = 0;
q.push({0,u});
while(!q.empty())
{
PII top = q.top();
q.pop();
int d=top.first,x=top.second;
if(vis[x]) continue;
vis[x] = 1;
for(int i=head[x];i!=-1;i=e[i].next)
{
int to = e[i].to;
if(dis[to] > dis[x] + e[i].w)
{
dis[to] = dis[x] + e[i].w;
pre[to] = x;
q.push({dis[to],to});
}
}
}
}
int main()
{
Init();
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue; //keyiwu
add(u,v,w);
add(v,u,w);
}
dijkstra(1);
int sum = 0;
if(dis[n] == 0x3f3f3f3f3f3f3f3f) {cout<<"-1";return 0;}
for(int i=n;i!=1;i=pre[i])
{
res[++sum] = i;
}
res[++sum] = 1;
for(int i=sum;i>0;i--)
cout<<res[i]<<" ";
}