Acwing4196. 最短路径(dijkstra+链式前向星+堆优化)

Acwing4196. 最短路径

很好的一个dijkstra的模板题。

noteworthly的点

1.memset(dis,0x3f,sizeof(dis))初始化的dis如果是long long类型,则填充为0x3f3f3f3f3f3f3f3f 8个3f。如果dis 是int类型,则填充为0x3f3f3f3f四个3f

2.优先队列的写法
这里优先队列的排序是按照pair的first来排的,greater< PII >是小根堆

//有两个变量的优先队列:first是源点到某i点的距离,second 是源点到的某i点,
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII>> //greater是小顶堆 less<PII>是大顶堆

3.dijkstra本身可以处理自环和重复边。如果有自环,张弛操作不会进行。假设当前优先队列队首是一个环i->i;那么源点到i已经有一个距离就是dis[i]了,而张弛的是dis[i]和dis[k] + e[j].w,这里的k就是i(因为是环)所以不会张弛。
即使是其他点也不受影响。因为源点到i的距离dis[i]都没有受环的影响,则后面i到其他点的距离的张弛是+dis[i]的,所以也不受环的影响
自环和重边不影响dijkstra算法的正确性

4.如何判断不行?
求的是从1到n的距离,如果n的距离还是无穷大说明没有走到n,依据
dis[n]==inf, inf = 0x3f3f3f3f3f3f3f3f来判断是否有解

5.关于堆优化:
堆优化进去的一个结构体or pair,包含结点和源点到该节点的距离。对某一个点设为 x 的松弛操作进行了之后,优先队列里的原来的大的距离并没有变, 此时x并不是整个队列里最小的(即不是队首),所以vis[x] = 0,这个时候就可以把x更新的距离更新入队。永远不会访问到原来的大的距离了,访问到也是visted了然后continue。continue非常重要,有了continue后面更新了的访问了前面距离大的就不会访问了。

#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int N = 1e5+10;
priority_queue<PII,vector<PII>,greater<PII>> q;
ll dis[N];
int vis[N];
int head[N];
int pre[N];
int res[N];
int n,m;
int cnt=0;
struct edge{
    int to,w,next;
}e[N];
void add(int u,int v,int w)
{
    e[cnt].next=head[u];
    e[cnt].w=w;
    e[cnt].to=v;
    head[u]=cnt++;
}
void Init()
{
    memset(dis,0x3f,sizeof(dis));
    memset(vis,0,sizeof(vis));
    for(int i=0;i<N;i++) head[i] = -1;
}
void dijkstra(int u)
{
    dis[u] = 0;
    q.push({0,u});
    while(!q.empty())
    {
        PII top = q.top();
        q.pop();
        int d=top.first,x=top.second;
        if(vis[x]) continue;
        vis[x] = 1;
        for(int i=head[x];i!=-1;i=e[i].next)
        {
            int to = e[i].to;
            if(dis[to] > dis[x] + e[i].w)
            {
                dis[to] = dis[x] + e[i].w;
                pre[to] = x;
                q.push({dis[to],to});
            }
        }
    }
}
int main()
{
    Init(); 
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        if(u==v) continue;  //keyiwu
            add(u,v,w);
            add(v,u,w);
          
        
    }
    dijkstra(1);
    int sum = 0; 
    if(dis[n] == 0x3f3f3f3f3f3f3f3f) {cout<<"-1";return 0;}
    for(int i=n;i!=1;i=pre[i])
    {
        res[++sum] = i;
    }
    res[++sum] = 1;
    for(int i=sum;i>0;i--)
        cout<<res[i]<<" ";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值