搜索与图论:Kruskal

搜索与图论:Kruskal

Kruskal算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,

E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,

其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1 ≤ n ≤ 105,
1 ≤ m ≤ 2∗105,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

在这里插入图片描述

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int p[N];
int n, m;
struct Edge {
	int a, b, w;
	bool operator< (const Edge &W) const {
		return w < W.w;
	}
} edges[M];
int find (int x) 
{
	if (p[x] != x) p[x] = find(p[x]);
	else return x;
}
int Kruskal() 
{
	int res = 0, cnt = 0;
	for (int i = 0; i < m; i ++ ) {
		int a = edges[i].a, b = edges[i].b, w = edges[i].w;
		if (find(a) != find(b)) {
			p[find(a)] = p[find(b)];
			cnt ++ ;
			res += w;
		}
	}
	if (cnt == n - 1) return res;
	else return 0x3f3f3f;
}
int main()
{
	cin >> n >> m;
	for (int i = 0; i < n; i ++ ) p[i] = i; // 初始化并查集 
	for (int i = 0; i < m; i ++ ) {
		int a, b, w;
		cin >> a >> b >> w;
		edges[i] = {a, b, w};
	}
	sort(edges, edges + m); // 按照权重从大到小排序 
	int t = Kruskal();
	if (t == 0x3f3f3f) puts("impossible");
	else cout << t << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值