搜索与图论:Kruskal
Kruskal算法求最小生成树
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,
E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,
其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1 ≤ n ≤ 105,
1 ≤ m ≤ 2∗105,
图中涉及边的边权的绝对值均不超过 1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010;
int p[N];
int n, m;
struct Edge {
int a, b, w;
bool operator< (const Edge &W) const {
return w < W.w;
}
} edges[M];
int find (int x)
{
if (p[x] != x) p[x] = find(p[x]);
else return x;
}
int Kruskal()
{
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ ) {
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
if (find(a) != find(b)) {
p[find(a)] = p[find(b)];
cnt ++ ;
res += w;
}
}
if (cnt == n - 1) return res;
else return 0x3f3f3f;
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ ) p[i] = i; // 初始化并查集
for (int i = 0; i < m; i ++ ) {
int a, b, w;
cin >> a >> b >> w;
edges[i] = {a, b, w};
}
sort(edges, edges + m); // 按照权重从大到小排序
int t = Kruskal();
if (t == 0x3f3f3f) puts("impossible");
else cout << t << endl;
return 0;
}