dfs
//DFS
//n件物品,每件物品重量为w[i],价值为c[i].现在选出若干件物品放在v的背包里
#include<iostream>
const int maxn = 30;
int n, v, maxvalue = 0;//物品件数n,背包容量v,最大价值maxvalue
int w[maxn], c[maxn];
//sumw和sumc分别为当前重量和价值
void dfs(int index, int sumw, int sumc){
if(index == n){//死胡同,已经选完n件,才可能返回
if(sumw <= v&& sumc > maxvalue){
maxvalue = sumc;
}
return;
}
//分岔口
dfs(index+1, sumw, sumc);//不选index件物品,跳到下一件
def(index+1,sumw+w[index], sumc + c[index]);//选第index件产品
}
int main(){
scanf("%d%d", &n, &v);
for(int i = 0; i < n; i++){
scanf("%d", &w[i]);
}
for(int i = 0; i < n; i++){
scanf("%d", &c[i]);
}
dfs(0, 0, 0);//
printf("%d\n", maxvalue);
return 0;
}
//剪枝
//解决: 给定一个序列,枚举这个序列的所有子序列(可以不连续)
void dfs(int index, int sumw, int sumc){
if(index == n){
return;//完成n件物品选择
}
dfs(index+1;sumw,sumc);
if(sum + w[index] <= v&&sumc + c[index] >){//把对sumw的判断加入岔道口,提高效率
ans = sumc + c[index];
dfs(index+1, sumw + w[index], sumc + c[index]);
}
}
#include<vector>
//n个整数中选择k个数的所有方案
//序列a中选k个数使得和为x,最大平方和为maxsumsqu
int n, k, x, maxsumsqu = -1, a[maxn];
//temp存放临时方案,ans存放平方和最大的方案
vector<int> temp, ans;
//当前已选整数个数为nowk
//sumsqu为当前已选整数平方和
void dfs(int index, int nowk, int sum, int sumsqu){
if(nowk == k && sum == x){//边界
if(sumsqu > maxsumsqu){
maxsumsqu = sumsqu;
ans = temp;
}
return;
}
//已经处理完n个数,或者超过k个数,或者和超过x,返回
if(index == n|| nowk > k || sum > x) return;
//选index号位
temp.push_back(a[index]);
dfs(index + 1, nowk + 1, sum + a[index], sumsqu + a[index] * a[index]);
temp.pop_back();
//删除从这个temp起后面的所有元素(即不选index号位)
dfs(index + 1, nowk, sum, sumsqu);
}
bfs
//BFS
void bfs(int s){
queue<int> q;
q.push(s);
while(!q.empty()){
//取出队首元素top
//访问队首元素top
//将队首元素出队
//将top的下一层结点中未曾入队的结点全部入队,设为已入队
}
}
//给出n*m的矩阵,矩阵中的元素为0或1,称位置(x,y)与其上下左右四个位置相邻,
//如果矩阵中有若干个1相邻,称这些1构成一个块;
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 100;
struct node{
int x, y;//位置x,y
}Node;
int n, m;
int matrix[maxn][maxn];
bool inq[maxn][maxn] = {false};//记录位置(x,y)是否入过队
int X[4] = {0, 0, 1, -1};
int Y[4] = {1, -1, 0, 0};
bool judge(int x, int y){//判断坐标(x,y)是否需要访问
//越界返回false
if(x >= n|| x < 0|| y >= m|| y < 0) return false;
//当前位置为0,或(x,y)已入过队
if(matrix[x][y] == 0|| inq[x][y] == true) return false;
//都不满足
return true;
}
//bfs函数访问位置(x,y)所在块,将块中所有1的inq都设为true
void bfs(int x, int y){
queue<node> q;
node.x = x, node.y = y;
q.push(node);
inq[x][y] = true;
while(!q.empty()){
node top = q.front();
q.pop();
for(int i = 0; i < 4; i++){
int newx = top.x + x[i];
int newy = top.y + y[i];
if(judge(newx, newy)){
node.x = newx, node.y = newy;
q.push(node);
inq[newx][newy] = true;
}
}
}
}
int main(){
scanf("%d%d", &n, &m);
for(int x = 0; x < n; x++){
for(int y = 0; y < m; y++){
scanf("%d", &matrix[x][y]);//读入01矩阵
}
}
int ans = 0;//存块数
for(int x = 0; x < n; x++){
for(int y = 0; y < m; y++){
if(matrix[x][y] == 1&&inq[x][y] == false){
ans++;
bfs(x,y);//访问整个块,将整个块都标记为true
}
}
}
printf("%d\n", ans);
return0;
}
//给出一个n*m大小的迷宫,*代表墙壁,.代表路,s为起点,t为终点
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 100;
struct node{
int x, y;
int step;
}s, t, Node;//s起点,t终点,node为临时节点
int n, m;
char maze[maxn][maxn];
bool inq[maxn][maxn] = {false};
int x[4] = {0, 0, 1, -1};
int y[4] = {1, -1, 0, 0};
bool test(int x, int y){
if(x >= n|| x < 0|| y >= m || y < 0) return false;
if(maze[x][y] == '*') return false;
if(inq[x][y] == true) return false;
return true;//有效位置
}
int bfs(){
queue<node> q;
q.push(s);
while(!q.empty()){
node top = q.front();
q.pop();
if(top.x == t.x&&top.y == t.y){
return top.step;
}
for(int i = 0; i < 4; i++){
int newx = top.x + x[i];
int newy = top.y + y[i];
if(test(newx, newy)){//如果新结点合格,则入队
Node.x = newx, Node.y = newy;
Node.step = top.step + 1;
q.push(Node);
inq[newx][newy] = true;
}
}
}
return -1;//无法到达终点
}
int main(){
scanf("%d%d", &n, &m);
for(int x = 0; x < n; x++){
getchar();//每行开头先来个\n
for(int y = 0; y < m; y++){
maze[x][y] = getchar();
}
// maze[x][m+1] = '\0';
}
scanf("%d%d%d%d", &s.x, &s.y, &t.x, &t.y);
printf("%d\n", bfs());
return 0;
}
//push操作只是制造了该元素的副本入队
//要修改原元素,最好入队它们的编号push(i) 通过a[q.front()].data即可修改元素
//若只是入队访问,则push a[i]即可,
struct node{
int data;
}a[10];//每个结构体有10个元素
int main(){
queue<int> q;
for(int i = 1; i <= 3; i++){
a[i].data = i;
q.push(i);//入队的是下标i,而不是a[i]本身
}
a[q.front()].data = 100;
printf("%d\n", a[1].data);//此时,通过push数组下标i入队,通过a[q.front()]即可修改原元素
return 0;
}