离散数学——关系

关系

关系的定义

在这里插入图片描述
在这里插入图片描述

几种特殊的关系

空关系:
对任意集合A,B,Ф⊆A×B ,Ф⊆A×A
所以Ф是由A到B的关系,Ф也是A上的关系,称为空关系。

全域关系:
因为A×B⊆A×B,A×A⊆A×A ,所以A×B是一个由A到B的关系,称为由A到B的全域关系。A×A是A上的一个关系,称为A上的全域关系。常将A×A记作:
                                          UA={<ai,aj>|ai, aj∈A}

恒等关系:
定义集合A上的恒等关系 IA={<a,a>|a∈A}

例子:设A={a, b, c}
则 UA = { <a,a>, <a,b>, <a,c>, <b,a>, <b,b>, <b,c>, <c,a>, <c,b>, <c,c> }
是A上的全域关系。IA= { <a,a>, <b,b>, <c,c> }是A上的恒等关系。

关系的表示

集合表示法

用表示集合的列举法或描述法来表示关系。

矩阵表示法

在这里插入图片描述

关系图表示法

设 A 和 B 为任意的非空有限集,R 为任意一个从 A 到 B 的二元关系。以 A∪B 中的每个元素为结点。对每个 <x,y> ∈R ∧ x ∈ A ∧ y ∈ B 皆画一条从 x 到 y 的有向边,这样得到的一个图称为关系 R 的关系图。

关系的性质

##

由关系图、关系矩阵判别关系的性质

在这里插入图片描述
在这里插入图片描述

复合关系与逆关系

关系的并、交、补及对称差运算

若R与S都是集合A到集合B的关系,则 R∪S , R ∩ S , R - S , R ‾ \overline{R} R ,R ⊕ S 均为A到B的关系。

复合关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

逆关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

关系的闭包运算

关系的闭包的概念

在这里插入图片描述
在这里插入图片描述

关系的闭包的求法

1.由定义求闭包:
在这里插入图片描述

在这里插入图片描述
2.利用关系矩阵求闭包

3.利用关系图求闭包

集合的划分与覆盖

集合的划分

在这里插入图片描述

集合的覆盖

在这里插入图片描述
说明:
(1) 若S是A的划分,则S也一定是A的覆盖。
(2) 任意给定集合A的划分或覆盖不是唯一的。
(3) 给定了集合A的划分或覆盖,则A便唯一确定。
(4) 覆盖中各子集可重叠,划分则不然。
(5) 以非空集A为元素的集合S={A}称为A的最小划分。
(6) S = { { a } | ∀ a ∈ A } 称为A的最大划分。

等价关系

等价关系的定义

等价关系

集合A上的关系 ρ,如果它是自反的,对称的,且可传递的,则称ρ是A上的等价关系。
例如:一群人的集合中姓氏相同的关系也是等价关系。但父子关系不是等价关系,因为它不可传递。

元素a与b等价

设 ρ 是集合A上的等价关系,若元素a ρ b ,则称a与b等价,或称b与a等价。

等价类

在这里插入图片描述

等价类的性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

等价关系与划分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相容关系

相容关系的定义

集合A上的关系 ρ ,如果它是自反的,对称的,则称 ρ 是A上的相容关系。

最大相容类

在这里插入图片描述

相容关系与覆盖

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意:由定理3.9.3可知,给定集合A的任意一个覆盖,必可在A上构造一个对应于此覆盖的一个相容关系,但是两个不同的覆盖却能构造出的相同的相容关系。

在这里插入图片描述

序关系

偏序关系的定义

在这里插入图片描述

偏序关系的哈斯图

在这里插入图片描述
在这里插入图片描述

偏序集中特殊位置的元素

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
出界有以下性质:
(1)一个集合可能没有上界或下界,若有,则不一定唯一,并且它们可能在B中,也可能在B外;
(2)一个集合若有上下确界,必定是唯一的,并且若是B的最大(小)元素,则它必是B的上(下)确界。

两种特殊的偏序集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值