关系
关系
关系的定义
几种特殊的关系
空关系:
对任意集合A,B,Ф⊆A×B ,Ф⊆A×A
所以Ф是由A到B的关系,Ф也是A上的关系,称为空关系。
全域关系:
因为A×B⊆A×B,A×A⊆A×A ,所以A×B是一个由A到B的关系,称为由A到B的全域关系。A×A是A上的一个关系,称为A上的全域关系。常将A×A记作:
UA={<ai,aj>|ai, aj∈A}
恒等关系:
定义集合A上的恒等关系 IA={<a,a>|a∈A}
例子:设A={a, b, c}
则 UA = { <a,a>, <a,b>, <a,c>, <b,a>, <b,b>, <b,c>, <c,a>, <c,b>, <c,c> }
是A上的全域关系。IA= { <a,a>, <b,b>, <c,c> }是A上的恒等关系。
关系的表示
集合表示法
用表示集合的列举法或描述法来表示关系。
矩阵表示法
关系图表示法
设 A 和 B 为任意的非空有限集,R 为任意一个从 A 到 B 的二元关系。以 A∪B 中的每个元素为结点。对每个 <x,y> ∈R ∧ x ∈ A ∧ y ∈ B 皆画一条从 x 到 y 的有向边,这样得到的一个图称为关系 R 的关系图。
关系的性质
由关系图、关系矩阵判别关系的性质
复合关系与逆关系
关系的并、交、补及对称差运算
若R与S都是集合A到集合B的关系,则 R∪S , R ∩ S , R - S , R ‾ \overline{R} R ,R ⊕ S 均为A到B的关系。
复合关系
逆关系
关系的闭包运算
关系的闭包的概念
关系的闭包的求法
1.由定义求闭包:
2.利用关系矩阵求闭包
3.利用关系图求闭包
集合的划分与覆盖
集合的划分
集合的覆盖
说明:
(1) 若S是A的划分,则S也一定是A的覆盖。
(2) 任意给定集合A的划分或覆盖不是唯一的。
(3) 给定了集合A的划分或覆盖,则A便唯一确定。
(4) 覆盖中各子集可重叠,划分则不然。
(5) 以非空集A为元素的集合S={A}称为A的最小划分。
(6) S = { { a } | ∀ a ∈ A } 称为A的最大划分。
等价关系
等价关系的定义
等价关系
集合A上的关系 ρ,如果它是自反的,对称的,且可传递的,则称ρ是A上的等价关系。
例如:一群人的集合中姓氏相同的关系也是等价关系。但父子关系不是等价关系,因为它不可传递。
元素a与b等价
设 ρ 是集合A上的等价关系,若元素a ρ b ,则称a与b等价,或称b与a等价。
等价类
等价类的性质
等价关系与划分
相容关系
相容关系的定义
集合A上的关系 ρ ,如果它是自反的,对称的,则称 ρ 是A上的相容关系。
最大相容类
相容关系与覆盖
注意:由定理3.9.3可知,给定集合A的任意一个覆盖,必可在A上构造一个对应于此覆盖的一个相容关系,但是两个不同的覆盖却能构造出的相同的相容关系。
序关系
偏序关系的定义
偏序关系的哈斯图
偏序集中特殊位置的元素
出界有以下性质:
(1)一个集合可能没有上界或下界,若有,则不一定唯一,并且它们可能在B中,也可能在B外;
(2)一个集合若有上下确界,必定是唯一的,并且若是B的最大(小)元素,则它必是B的上(下)确界。
两种特殊的偏序集