离散数学(十一):关系的概念、表示和运算

0 前言

这一章 的题目是二元关系与函数。如何理解? 函数,是x 到y 的映射,这种映射反应的就是一种关系(涉及到了x、y两个变量,所以是二元关系),因为定义域x 是一个集合、值域y 也是一个集合所以函数就是一个<x, y> 有序对的集合!

所以函数即是数对的集合!

函数的最基本定义不再是一种“对应规则”,而是集合。 有了函数的定义,我们就可以用 关系 来定义函数的复合、反函数 等概念。

此外,我们常常讲关系数据库,一个关系实际对应到一张关系数据表,作为数据库操作的数学基础,关系中不同的运算可映射到数据库中的不同操作。

1 有序对与笛卡尔积

1.1 有序对

定义: 由两个客体 x y,按照一定的顺序组成的二元组称为有序对,记作<x,y>

实例:点的直角坐标(3,-4)

性质:   有序性  <x,y>\neq<y,x> (当x\neqy时) 

1  <2, x+5> = <3y- 4, y>,求 x, y.

解     3y- 4 = 2, x+5 = y  \Rightarrow y = 2, x = - 3  

1.2 笛卡尔积

定义   设A,B为集合,AB 笛卡儿积记作AXB, 即       A X B ={ <x,y> | x\inA  \wedge y\inB }

A={1,2,3}, B={a,b,c}

 AXB ={<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>, <3,a>,<3,b>,<3,c>}

 BXA ={<a,1>,<b,1>,<c,1>,<a,2>,<b,2>,<c,2>, <a,3>, <b,3>,<c,3>}

   

1.3 笛卡尔积的性质

 

2 关系

2.1 二元关系 

定义 如果一个集合满足以下条件之一, 则称该集合为一个二元关系, 简称为关系,记作R.

1)集合非空, 且它的元素都是有序对

2)集合是空集

<x,y>∈R, 可记作 xRy; 

实例:R={<1,2>,<a,b>}, S={<1,2>,a,b}.

R是二元关系, a, b不是有序对时,S不是二元关系

2.2 A上的二元关系 

定义 A,B为集合A×B的任何子集所定义的二元关系叫做AB的二元关系,

A=B时则叫做 A的二元关系.

A={0,1}, B={1,2,3},  R1={<0,2>},  R2=A×BR3={<0,1>}. 那么 R1, R2, R是从 A B

的二元关系, R也是 A上的二元关系.

计数:|A|=n, |A×A|=n2, A×A的子集有 个. 所以 A上有 个不同的二元关系.

例如 |A|=3, A上有=512个不同的二元关系.

2.3 关系举例

空关系:A 为任意集合,A 上的关系,称为空关系.

全域关系:  ={<x,y>|xAyA}=A×A
恒等关系:  ={<x,x>|xA}

 小于等于关系: 

 整除关系:  

包含关系:
例如, A={1,2},
 
EA={<1,1>,<1,2>,<2,1>,<2,2>}
 
IA={<1,1>,<2,2>}

 2.4 关系的表示

关系的表示方式有三种:关系的集合表达式、关系矩阵、关系图。

  • 关系集合:
  • 关系矩阵:若A={a1, a2, …, am}B={b1, b2, …, bn}R是从AB的关系,R的关系矩阵是布尔矩阵
  • 关系图:若A= {x1, x2, …, xm}R是从A上的关系,R的关系图是GR=<A, R>, 其中A为结点集,R为边集.如果<xi,xj>属于关系R,在图中就有一条从 xi xj 的有向边.

注意:A, B为有穷集,关系矩阵适于表示从AB的关系或者A上的关系,关系图适于表示A上的关系。

 3 关系的运算

 

 

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散数学中,关系是一个基本的概,被广泛应用于许多领域。以下是一些关系离散数学中的应用示例: 1. 关系代数:关系代数是研究关系的代数性质和操作的一个分支。它包括关系的并、交、差、投影等运算,用于描述和操作关系的集合。 2. 图论:图论是研究图及其性质的一个分支。图可以看作节点和边之间的关系集合。图论中的很多概念和算法都基于关系,如连通性、路径、最短路径、最小生成树等。 3. 布尔代数:布尔代数是研究逻辑代数和集合运算的一个分支。布尔代数中的运算符(如与、或、非)和逻辑表达式都可以看作关系的操作,用于描述和操作集合之间的关系。 4. 关系模型:关系模型是数据库理论中描述和操作关系数据库的一种模型。它基于关系代数和关系演算,用于描述数据表之间的关系和操作。 5. 组合数学:组合数学是研究离散结构和组合问题的一个分支。在组合数学中,关系被用于描述集合之间的关系和排列组合的性质。 举例来说,假设有一个集合A={1, 2, 3}和一个集合B={a, b},可以定义一个关系R={(1, a), (2, a), (2, b)},表示A中的元素与B中的元素之间的对应关系。这个关系可以用于描述一个函数,其中1和2分别对应于a,2对应于b。 另一个例子是在图论中,可以定义一个关系R,表示节点之间的连接关系。例如,对于一个无向图,关系R={(1, 2), (2, 3), (3, 1)}表示节点1、2和3之间的连接关系。 这些示例说明了关系离散数学中的应用,它们帮助我们描述和操作集合之间的关系、图的结构和逻辑表达式等,在离散数学的研究和实际应用中具有重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值