傅里叶级数专题之数学基础
学习 傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11
傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)
离散傅里叶级数、离散时间傅里叶变换: 离散的信号 📶 (信号的周期性)
离散时间傅里叶变换、离散傅里叶变换(快速傅里叶变换): 离散的信号 📶 (信号的长度)
0. 数学基础
学习傅里叶级数专题内容之前, 需了解并掌握一定的数学基础知识.
复数、三角所数、三角函数系与其正交性、积分、级数、线性代数、概率论和统计、微分方程、数学分析、抽象代数与数论.
0.1 复数(Complex Numbers)
复数是傅里叶变换中的基本概念, 因为傅里叶变换涉及到复数的指数函数. 需要掌握复数的表示、运算(加、减、乘、除)、共轭、模和极坐标表示等.
0.1.1 复数的表示
复数通常表示为 z = a + b i z = a + bi z=a+bi 的形式, 其中 a a a 和 b b b 是实数, i i i 是虚数单位, 满足 i 2 = − 1 i^2 = -1 i2=−1. 这里, a a a 是复数的实部, b b b 是复数的虚部.
0.1.2 复数的运算
-
加法: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i
-
减法: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) - (c + di) = (a - c) + (b - d)i (a+bi)−(c+di)=(a−c)+(b−d)i
-
乘法: ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i (a + bi)(c + di) = (ac - bd) + (ad + bc)i (a+bi)(c+di)=(ac−bd)+(ad+bc)i
-
除法:
a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) c 2 + d 2 + b c − a d c 2 + d 2 i \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{(ac + bd)}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} \, i c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2(ac+bd)+c2+d2bc−adi
0.1.3 复数的共轭
复数 z = a + b i z = a + bi z=a+bi 的共轭复数表示为 z ˉ = a − b i \bar{z} = a - bi zˉ=a−bi. (共轭复数在计算复数的模和进行复数的除法时非常有用)
0.1.4 复数的模
复数 z = a + b i z = a + bi z=a+bi 的模(或绝对值)定义为 ∣ z ∣ = a 2 + b 2 |z| = \sqrt{a^2 + b^2} ∣z∣=a2+b2. (模表示复数在复平面上到原点的距离)
0.1.5 复数的极坐标表示
复数可用极坐标形式表示, 即 z = r e i θ z = re^{i\theta} z=reiθ, 其中 r = ∣ z ∣ r = |z| r=∣z∣ 是复数的模, θ \theta θ 是复数的辐角(或相位), 满足 tan θ = b a \tan \theta = \frac{b}{a} tanθ=ab. (极坐标表示在进行复数的乘法和除法时非常方便)
0.1.6 傅里叶变换中的应用
在傅里叶变换中, 复数的指数函数 e i ω t e^{i\omega t} eiωt 被广泛使用, 它可以通过欧拉公式表示为 e i ω t = cos ( ω t ) + i sin ( ω t ) e^{i\omega t} = \cos(\omega t) + i\,\sin(\omega t) eiωt=cos(ωt)+isin(ωt). 这个公式将三角函数与复数指数函数联系起来, 使得傅里叶变换可以将信号从时域转换到频域.
0.2 三角函数(Trigonometric Functions)
三角函数是傅里叶级数和傅里叶变换中的基础, 因为这些变换将信号分解为正弦和余弦波的叠加. 需要掌握正弦函数、余弦函数的性质、周期性、对称性以及三角恒等式等.
0.2.1 正弦函数和余弦函数
正弦函数 sin ( x ) \sin(x) sin(x) 和余弦函数 cos ( x ) \cos(x) cos(x) 是周期函数, 周期为 2 π 2\pi 2π. 它们在数学和物理中具有广泛的应用.
0.2.2 性质
- 周期性: sin ( x + 2 π ) = sin ( x ) \sin(x + 2\pi) = \sin(x) sin(x+2π)=sin(x) 和 cos ( x + 2 π ) = cos ( x ) \cos(x + 2\pi) = \cos(x) cos(x+2π)=cos(x).
- 对称性: sin ( − x ) = − sin ( x ) \sin(-x) = -\sin(x) sin(−x)=−sin(x)(奇函数)和 cos ( − x ) = cos ( x ) \cos(-x) = \cos(x) cos(−x)=cos(x)(偶函数).
- 有界性: − 1 ≤ sin ( x ) ≤ 1 -1 \leq \sin(x) \leq 1 −1≤sin(x)≤1 和 − 1 ≤ cos ( x ) ≤ 1 -1 \leq \cos(x) \leq 1 −1≤cos(x)≤1.
- 连续性: 正弦和余弦函数在实数域上连续.
0.2.3 三角恒等式
三角恒等式是三角函数之间的关系式, 包括:
-
和差公式:
sin ( a ± b ) = sin ( a ) cos ( b ) ± cos ( a ) sin ( b ) \sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b) sin(a±b)=sin(a)cos(b)±cos(a)sin(b)cos ( a ± b ) = cos ( a ) cos ( b ) ∓ sin ( a ) sin ( b ) \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) cos(a±b)=cos(a)cos(b)∓sin(a)sin(b)
-
倍角公式:
sin ( 2 x ) = 2 sin ( x ) cos ( x ) \sin(2x) = 2\sin(x)\cos(x) sin(2x)=2sin(x)cos(x)cos ( 2 x ) = cos 2 ( x ) − sin 2 ( x ) \cos(2x) = \cos^2(x) - \sin^2(x) cos(2x)=cos2(x)−sin2(x)
-
半角公式:
sin ( x 2 ) = ± 1 − cos ( x ) 2 \sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos(x)}{2}} sin(2x)=±21−cos(x)cos ( x 2 ) = ± 1 + cos ( x ) 2 \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos(x)}{2}} cos(2x)=±21+cos(x)
-
和差化积公式:
sin ( a ) + sin ( b ) = 2 sin ( a + b 2 ) cos ( a − b 2 ) \sin(a) + \sin(b) = 2\sin\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) sin(a)+sin(b)=2sin(2a+b)cos(2a−b)cos ( a ) + cos ( b ) = 2 cos ( a + b 2 ) cos ( a − b 2 ) \cos(a) + \cos(b) = 2\cos\left(\frac{a + b}{2}\right)\cos\left(\frac{a - b}{2}\right) cos(a)+cos(b)=2cos(2a+b)cos(2a−b)
0.2.4 傅里叶级数和傅里叶变换中的应用
在傅里叶级数中, 周期函数
f
(
t
)
f(t)
f(t) 被表示为正弦和余弦函数的无穷级数:
f
(
t
)
=
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
2
π
n
t
T
)
+
b
n
sin
(
2
π
n
t
T
)
)
f(t) = a_0 + \sum_{n = 1}^{\infty} \left( a_n \cos\left(\frac{2\pi n t}{T}\right) + b_n \sin\left(\frac{2\pi n t}{T}\right) \right)
f(t)=a0+n=1∑∞(ancos(T2πnt)+bnsin(T2πnt))
在傅里叶变换中, 非周期函数
f
(
t
)
f(t)
f(t) 被表示为正弦和余弦函数的积分:
F
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt
F(ω)=∫−∞∞f(t)e−iωtdt
其中
e
−
i
ω
t
=
cos
(
ω
t
)
−
i
sin
(
ω
t
)
e^{-i \omega t} = \cos(\omega t) - i \sin(\omega t)
e−iωt=cos(ωt)−isin(ωt).
0.3 三角函数系与其正交性(Trigonometric function system and its orthogonality)
0.3.1 三角函数系的定义
三角函数系通常指的是由正弦和余弦函数构成的一组函数. 在数学中, 最常用的三角函数系是:
1
,
cos
(
x
)
,
sin
(
x
)
,
cos
(
2
x
)
,
sin
(
2
x
)
,
cos
(
3
x
)
,
sin
(
3
x
)
,
…
1,\, \cos(x),\, \sin(x),\, \cos(2x),\, \sin(2x),\, \cos(3x),\, \sin(3x),\, \ldots
1,cos(x),sin(x),cos(2x),sin(2x),cos(3x),sin(3x),…
这组函数在区间
[
−
π
,
π
]
[- \pi, \pi]
[−π,π] 上具有重要的性质, 尤其是正交性.
0.3.2 正交性的定义
在函数空间中, 如果两个函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的内积为零, 那么它们被称为正交的. 对于三角函数系, 内积通常定义为积分形式, 即:
⟨
f
,
g
⟩
=
1
π
∫
−
π
π
f
(
x
)
g
(
x
)
d
x
\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) \, dx
⟨f,g⟩=π1∫−ππf(x)g(x)dx
如果积分
⟨
f
,
g
⟩
=
0
\langle f, g \rangle = 0
⟨f,g⟩=0, 则
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x) 正交.
0.3.3. 三角函数系的正交性
三角函数系中的函数两两正交. 具体来说, 对于任意整数 m m m 和 n n n:
- cos ( m x ) \cos(mx) cos(mx) 和 cos ( n x ) \cos(nx) cos(nx) 正交, 当 m ≠ n m \neq n m=n.
- sin ( m x ) \sin(mx) sin(mx) 和 sin ( n x ) \sin(nx) sin(nx) 正交, 当 m ≠ n m \neq n m=n.
- cos ( m x ) \cos(mx) cos(mx) 和 sin ( n x ) \sin(nx) sin(nx) 正交, 对于所有 m m m 和 n n n.
这些正交关系可以通过计算内积来验证.
0.3.4 验证正交性
以 cos ( m x ) \cos(mx) cos(mx) 和 cos ( n x ) \cos(nx) cos(nx) 为例, 当 m ≠ n m \neq n m=n 时:
⟨
cos
(
m
x
)
,
cos
(
n
x
)
⟩
=
1
π
∫
−
π
π
cos
(
m
x
)
cos
(
n
x
)
d
x
\langle \cos(mx), \cos(nx) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(mx) \cos(nx) \, dx
⟨cos(mx),cos(nx)⟩=π1∫−ππcos(mx)cos(nx)dx
使用积化和差公式:
cos
(
m
x
)
cos
(
n
x
)
=
1
2
[
cos
(
(
m
+
n
)
x
)
+
cos
(
(
m
−
n
)
x
)
]
\cos(mx) \cos(nx) = \frac{1}{2} [\cos((m+n)x) + \cos((m-n)x)]
cos(mx)cos(nx)=21[cos((m+n)x)+cos((m−n)x)]
代入积分:
⟨
cos
(
m
x
)
,
cos
(
n
x
)
⟩
=
1
2
π
∫
−
π
π
[
cos
(
(
m
+
n
)
x
)
+
cos
(
(
m
−
n
)
x
)
]
d
x
\langle \cos(mx), \cos(nx) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\cos((m+n)x) + \cos((m-n)x)] \, dx
⟨cos(mx),cos(nx)⟩=2π1∫−ππ[cos((m+n)x)+cos((m−n)x)]dx
由于
cos
(
k
x
)
\cos(kx)
cos(kx) 在
[
−
π
,
π
]
[- \pi, \pi]
[−π,π] 上的积分为零(对于任何非零整数
k
k
k), 因此:
⟨
cos
(
m
x
)
,
cos
(
n
x
)
⟩
=
0
\langle \cos(mx), \cos(nx) \rangle = 0
⟨cos(mx),cos(nx)⟩=0
类似地, 可以验证
sin
(
m
x
)
\sin(mx)
sin(mx) 和
sin
(
n
x
)
\sin(nx)
sin(nx) 的正交性, 以及
cos
(
m
x
)
\cos(mx)
cos(mx) 和
sin
(
n
x
)
\sin(nx)
sin(nx) 的正交性.
0.3.5 正交性的应用
三角函数系的正交性在傅里叶分析中具有重要意义. 傅里叶级数和傅里叶变换利用三角函数系的正交性将函数分解为不同频率的正弦和余弦波的线性组合, 这在信号处理、图像处理、量子物理等领域有广泛的应用.
0.4 积分(Integration)
积分是微积分中的一个基本概念, 它与导数互为逆运算. 积分分为不定积分和定积分两种. 不定积分是求一个函数的原函数, 而定积分是求一个函数在某个区间上的积分值. 积分是傅里叶变换中的关键操作, 因为傅里叶变换涉及到对函数进行积分以从时域转换到频域. 需要掌握定积分、不定积分、积分技巧(如分部积分、换元积分)以及积分的性质等.
0.4.1 定积分(Definite Integral)
定积分表示函数在某个区间上的积分, 其结果是一个数值. ——面积
设函数
f
(
x
)
f(x)
f(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上有定义, 将区间
[
a
,
b
]
[a, b]
[a,b] 分成
n
n
n 个小区间, 每个小区间的长度为
Δ
x
i
=
x
i
−
x
i
−
1
\Delta x_i = x_i - x_{i-1}
Δxi=xi−xi−1, 在每个小区间
[
x
i
−
1
,
x
i
]
[x_{i-1}, x_i]
[xi−1,xi] 上任取一点
ξ
i
\xi_i
ξi, 作和式:
∑
i
=
1
n
f
(
ξ
i
)
Δ
x
i
\sum_{i = 1}^{n} f(\xi_i) \Delta x_i
i=1∑nf(ξi)Δxi
如果当
λ
=
max
{
Δ
x
1
,
Δ
x
2
,
…
,
Δ
x
n
}
→
0
\lambda = \max \{\Delta x_1, \Delta x_2, \ldots, \Delta x_n\} \to 0
λ=max{Δx1,Δx2,…,Δxn}→0 时, 上述和式的极限存在, 且与
ξ
i
\xi_i
ξi 的取法无关, 则称此极限为函数
f
(
x
)
f(x)
f(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上的定积分, 记作:
∫
a
b
f
(
x
)
d
x
=
lim
λ
→
0
∑
i
=
1
n
f
(
ξ
i
)
Δ
x
i
\int_{a}^{b} f(x) \, dx = \lim_{\lambda \to 0} \sum_{i = 1}^{n} f(\xi_i) \Delta x_i
∫abf(x)dx=λ→0limi=1∑nf(ξi)Δxi
其中
a
a
a 和
b
b
b 是积分的上下限.
0.4.2 不定积分(Indefinite Integral)
不定积分表示函数的原函数, 其结果是一个函数. ——面积公式
设
F
(
x
)
F(x)
F(x) 是函数
f
(
x
)
f(x)
f(x) 的一个原函数, 即
F
′
(
x
)
=
f
(
x
)
F'(x) = f(x)
F′(x)=f(x), 则
f
(
x
)
f(x)
f(x) 的不定积分定义为:
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
\int f(x) \, dx = F(x) + C
∫f(x)dx=F(x)+C
其中
F
(
x
)
F(x)
F(x) 是
f
(
x
)
f(x)
f(x) 的一个原函数,
C
C
C 是积分常数.
0.4.3 积分技巧
-
分部积分(Integration by Parts):
用于积分两个函数的乘积, 公式为:
∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫udv=uv−∫vdu
其中 u u u 和 d v dv dv 是被积函数的一部分, d u du du 和 v v v 分别是 u u u 和 d v dv dv 的微分和积分. -
换元积分(Substitution):
用于简化积分, 通过替换变量来改变积分的形式. 公式为:
∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( u ) d u \int f(g(x)) g'(x) \, dx = \int f(u) \, du ∫f(g(x))g′(x)dx=∫f(u)du
其中 u = g ( x ) u = g(x) u=g(x) 和 d u = g ′ ( x ) d x du = g'(x) \, dx du=g′(x)dx.
0.4.4 积分的性质
-
线性性质:
积分是线性的, 即:
∫ ( a f ( x ) + b g ( x ) ) d x = a ∫ f ( x ) d x + b ∫ g ( x ) d x \int (af(x) + bg(x)) \, dx = a \int f(x) \, dx + b \int g(x) \, dx ∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx
其中 a a a 和 b b b 是常数. -
可加性:
积分可以分成多个部分, 即:
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
其中 c c c 是 a a a 和 b b b 之间的任意点. -
奇偶函数的积分:
对于奇函数 f ( − x ) = − f ( x ) f(-x) = -f(x) f(−x)=−f(x), 在对称区间上的积分为零, 即:
∫ − a a f ( x ) d x = 0 \int_{-a}^a f(x) \, dx = 0 ∫−aaf(x)dx=0
对于偶函数 f ( − x ) = f ( x ) f(-x) = f(x) f(−x)=f(x), 在对称区间上的积分是两倍的半区间积分, 即:
∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx ∫−aaf(x)dx=2∫0af(x)dx
0.4.5 傅里叶变换中的应用
在傅里叶变换中, 积分用于将函数从时域转换到频域. 傅里叶变换的定义为:
F
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt
F(ω)=∫−∞∞f(t)e−iωtdt
其中
e
−
i
ω
t
=
cos
(
ω
t
)
−
i
sin
(
ω
t
)
e^{-i \omega t} = \cos(\omega t) - i \sin(\omega t)
e−iωt=cos(ωt)−isin(ωt). 这个积分将函数
f
(
t
)
f(t)
f(t) 分解为不同频率的正弦和余弦波的叠加.
0.5 级数(Series)
级数是傅里叶级数中的基础, 因为傅里叶级数将周期函数表示为正弦和余弦函数的无穷级数. 需要掌握无穷级数的概念、收敛性、求和技巧以及幂级数等.
0.5.1 无穷级数(Infinite Series)
无穷级数是将无穷多个数相加的结果. 一个无穷级数的一般形式为:
∑
n
=
0
∞
a
n
\sum_{n = 0}^{\infty} a_n
n=0∑∞an
其中
a
n
a_n
an 是级数的第
n
n
n 项.
0.5.2 收敛性(Convergence)
无穷级数的收敛性是指级数的和是否有限. 如果级数的和存在且有限, 则称级数收敛; 否则, 称级数发散. 判断级数收敛性的常用方法有:
- 比值判别法(Ratio Test): 如果 lim n → ∞ ∣ a n + 1 a n ∣ = L \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L limn→∞ anan+1 =L, 则当 L < 1 L < 1 L<1 时级数收敛, 当 L > 1 L > 1 L>1 时级数发散. 如果 L = 1 L = 1 L=1, 则比值判别法无法判断级数的收敛性, 需要使用其他方法.
- 根值判别法(Root Test): 如果 lim n → ∞ ∣ a n ∣ n = L \lim_{n \to \infty} \sqrt[n]{|a_n|} = L limn→∞n∣an∣=L, 则当 L < 1 L < 1 L<1 时级数收敛, 当 L > 1 L > 1 L>1 时级数发散. 如果 L = 1 L = 1 L=1, 则根值判别法无法判断级数的收敛性, 需要使用其他方法.
- 比较判别法(Comparison Test): 如果 0 ≤ a n ≤ b n 0 \leq a_n \leq b_n 0≤an≤bn 且 ∑ n = 0 ∞ b n \sum_{n=0}^{\infty} b_n ∑n=0∞bn 收敛, 则 ∑ n = 0 ∞ a n \sum_{n=0}^{\infty} a_n ∑n=0∞an 也收敛.
0.5.3 求和技巧(Summation Techniques)
求和技巧是计算无穷级数和的方法. 一些常见的求和技巧包括:
- 部分和(Partial Sum): 计算级数的前 N N N 项和, 然后取 N → ∞ N \to \infty N→∞ 的极限.
- 几何级数(Geometric Series): 对于 ∣ r ∣ < 1 |r| < 1 ∣r∣<1, 几何级数 ∑ n = 0 ∞ a r n = a 1 − r \sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r} ∑n=0∞arn=1−ra.
- 幂级数(Power Series): 幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_n x^n ∑n=0∞anxn 可以通过求导、积分或代入特定值来求和.
0.5.4 幂级数(Power Series)
幂级数是形式为
∑
n
=
0
∞
a
n
x
n
\sum_{n=0}^{\infty} a_n x^n
∑n=0∞anxn 的级数. 幂级数在数学分析中非常重要, 因为它们可以表示许多函数. 例如, 指数函数
e
x
e^x
ex 可以表示为幂级数:
e
x
=
∑
n
=
0
∞
x
n
n
!
e^x = \sum_{n = 0}^{\infty} \frac{x^n}{n!}
ex=n=0∑∞n!xn
0.5.5 傅里叶级数中的应用
傅里叶级数将周期函数表示为正弦和余弦函数的无穷级数:
f
(
t
)
=
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
2
π
n
t
T
)
+
b
n
sin
(
2
π
n
t
T
)
)
f(t) = a_0 + \sum_{n = 1}^{\infty} \left( a_n \cos\left(\frac{2\pi n t}{T}\right) + b_n \sin\left(\frac{2\pi n t}{T}\right) \right)
f(t)=a0+n=1∑∞(ancos(T2πnt)+bnsin(T2πnt))
其中
a
0
a_0
a0,
a
n
a_n
an, 和
b
n
b_n
bn 是级数的系数, 可以通过积分来计算.
0.6 线性代数(Linear Algebra)
线性代数是离散傅里叶变换(DFT)和快速傅里叶变换(FFT)中的基础, 因为这些变换可以表示为矩阵运算. 需要掌握向量、矩阵、线性空间、线性变换、特征值和特征向量等.
0.6.1 向量(Vector)
向量是线性代数中的基本概念, 表示为有序的数列. 向量可以进行加法、减法和数乘运算.
0.6.2 矩阵(Matrix)
矩阵是线性代数中的另一个基本概念, 表示为数的二维数组. 矩阵可以进行加法、减法、数乘和乘法运算.
0.6.3 线性空间(Linear Space)
线性空间是向量的集合, 满足向量加法和数乘的封闭性. 线性空间中的向量可以表示为基向量的线性组合.
0.6.4 线性变换(Linear Transformation)
线性变换是将一个线性空间映射到另一个线性空间的函数, 满足线性性质. 线性变换可以用矩阵表示.
0.6.5 特征值和特征向量(Eigenvalue and Eigenvector)
特征值和特征向量是线性变换中的重要概念. 对于线性变换 A A A, 如果存在非零向量 v v v 和标量 λ \lambda λ, 使得 A v = λ v A v = \lambda v Av=λv, 则 λ \lambda λ 是特征值, v v v 是对应的特征向量.
0.6.6 离散傅里叶变换和快速傅里叶变换中的应用
离散傅里叶变换(DFT)可以表示为矩阵乘法:
X
=
F
x
X = F x
X=Fx
其中
X
X
X 是频域向量,
x
x
x 是时域向量,
F
F
F 是 DFT 矩阵. DFT 矩阵的元素为复数, 表示为:
F
j
k
=
e
−
i
2
π
N
j
k
F_{jk} = e^{-i \frac{2\pi}{N} jk}
Fjk=e−iN2πjk
快速傅里叶变换(FFT)是 DFT 的高效算法, 通过分解 DFT 矩阵为较小的矩阵来减少计算量. FFT 算法利用了 DFT 矩阵的对称性和周期性.
0.7 概率论和统计(Probability and Statistics)
概率论和统计是信号处理中的基础, 因为信号处理中的许多问题涉及到随机信号和噪声. 需要掌握随机变量、概率分布、期望、方差、协方差、相关性以及统计估计等.
0.7.1 随机变量(Random Variable)
随机变量是随机试验结果的数值表示. 它可以是离散的(如抛硬币的结果)或连续的(如测量的温度).
0.7.2 概率分布(Probability Distribution)
概率分布描述了随机变量的可能取值及其对应的概率. 对于离散随机变量, 概率分布称为概率质量函数(PMF); 对于连续随机变量, 概率分布称为概率密度函数(PDF).
0.7.3 期望(Expectation): 描述随机变量的平均值或中心位置
期望是随机变量的平均值或中心位置的度量. 对于离散随机变量
X
X
X, 期望定义为:
E
(
X
)
=
∑
x
x
P
(
X
=
x
)
E(X) = \sum_{x} x P(X = x)
E(X)=x∑xP(X=x)
对于连续随机变量
X
X
X, 期望定义为:
E
(
X
)
=
∫
−
∞
∞
x
f
(
x
)
d
x
E(X) = \int_{-\infty}^{\infty} x f(x) \, dx
E(X)=∫−∞∞xf(x)dx
其中
P
(
X
=
x
)
P(X = x)
P(X=x) 是概率质量函数,
f
(
x
)
f(x)
f(x) 是概率密度函数.
0.7.4 方差(Variance): 描述随机变量的离散程度或波动大小
方差是随机变量的离散程度的度量. 方差定义为:
Var
(
X
)
=
E
[
(
X
−
E
(
X
)
)
2
]
\text{Var}(X) = E [(X - E(X))^2]
Var(X)=E[(X−E(X))2]
方差的平方根称为标准差(Standard Deviation).
0.7.5 协方差(Covariance): 描述两个随机变量的联合离散程度或线性关系的强度和方向
协方差是两个随机变量的联合离散程度的度量. 协方差定义为:
Cov
(
X
,
Y
)
=
E
[
(
X
−
E
(
X
)
)
(
Y
−
E
(
Y
)
)
]
\text{Cov}(X, Y) = E [(X - E(X))(Y - E(Y))]
Cov(X,Y)=E[(X−E(X))(Y−E(Y))]
协方差为正表示两个随机变量正相关, 为负表示负相关, 为零表示不相关.
0.7.6 相关性(Correlation): 描述两个随机变量的线性关系的强度和方向, 是协方差的标准化形式
相关性是两个随机变量的线性关系的度量. 相关系数定义为:
ρ
(
X
,
Y
)
=
Cov
(
X
,
Y
)
Var
(
X
)
Var
(
Y
)
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}
ρ(X,Y)=Var(X)Var(Y)Cov(X,Y)
相关系数的取值范围为
[
−
1
,
1
]
[-1, 1]
[−1,1], 其中
1
1
1 表示完全正相关,
−
1
-1
−1 表示完全负相关,
0
0
0 表示不相关.
0.7.7 统计估计(Statistical Estimation)
统计估计是根据样本数据估计总体参数的方法. 常见的估计方法包括:
- 点估计(Point Estimation): 用一个数值估计总体参数, 如样本均值估计总体均值.
- 区间估计(Interval Estimation): 用一个区间估计总体参数, 如置信区间.
0.7.8 信号处理中的应用
在信号处理中, 概率论和统计用于分析和处理随机信号和噪声. 例如:
- 噪声分析: 通过统计方法分析噪声的特性, 如均值、方差和相关性.
- 信号检测: 利用概率论判断信号是否存在, 如假设检验.
- 滤波器设计: 根据信号和噪声的统计特性设计滤波器, 如维纳滤波器.
- 参数估计: 估计信号的参数, 如频率、相位和幅度.
0.8 微分方程(Differential Equations)
微分方程是信号处理和系统分析中的基础, 因为许多物理系统和信号处理问题可以用微分方程来描述. 需要掌握常微分方程、偏微分方程、解法(如分离变量法、特征线法)以及边界条件等.
0.8.1 常微分方程(Ordinary Differential Equation, ODE)
常微分方程是只含有一个自变量的微分方程. 一个
n
n
n 阶常微分方程的一般形式为:
F
(
t
,
y
,
y
′
,
y
′
′
,
…
,
y
(
n
)
)
=
0
F(t, y, y', y'', \ldots, y^{(n)}) = 0
F(t,y,y′,y′′,…,y(n))=0
其中
y
y
y 是未知函数,
y
′
y'
y′ 是
y
y
y 的一阶导数,
y
′
′
y''
y′′ 是
y
y
y 的二阶导数, 以此类推.
0.8.2 偏微分方程(Partial Differential Equation, PDE)
偏微分方程是含有多个自变量的微分方程. 一个
n
n
n 阶偏微分方程的一般形式为:
F
(
x
1
,
x
2
,
…
,
x
m
,
u
,
u
x
1
,
u
x
2
,
…
,
u
x
m
,
u
x
1
x
1
,
u
x
1
x
2
,
…
,
u
x
1
…
x
m
)
=
0
F(x_1, x_2, \ldots, x_m, u, u_{x_1}, u_{x_2}, \ldots, u_{x_m}, u_{x_1 x_1}, u_{x_1 x_2}, \ldots, u_{x_1 \ldots x_m}) = 0
F(x1,x2,…,xm,u,ux1,ux2,…,uxm,ux1x1,ux1x2,…,ux1…xm)=0
其中
u
u
u 是未知函数,
u
x
i
u_{x_i}
uxi 是
u
u
u 关于
x
i
x_i
xi 的偏导数,
u
x
i
x
j
u_{x_i x_j}
uxixj 是
u
u
u 关于
x
i
x_i
xi 和
x
j
x_j
xj 的二阶偏导数, 以此类推.
0.8.3 解法
- 分离变量法(Separation of Variables): 适用于某些常微分方程和偏微分方程, 通过将变量分离来求解.
- 特征线法(Method of Characteristics): 适用于一阶偏微分方程, 通过求解特征方程来求解.
- 积分因子法(Integrating Factor Method): 适用于一阶线性常微分方程, 通过乘以积分因子来求解.
- 常数变易法(Variation of Parameters): 适用于高阶线性常微分方程, 通过求解常数的变易来求解.
- 拉普拉斯变换法(Laplace Transform Method): 适用于线性常微分方程, 通过拉普拉斯变换来求解.
0.8.4 边界条件(Boundary Conditions)
边界条件是微分方程求解时的附加条件, 用于确定解的特定形式. 常见的边界条件包括:
- 狄利克雷边界条件(Dirichlet Boundary Condition): 指定函数在边界上的值.
- 诺伊曼边界条件(Neumann Boundary Condition): 指定函数在边界上的导数值.
- 罗宾边界条件(Robin Boundary Condition): 指定函数在边界上的值和导数值的线性组合.
0.8.5 信号处理和系统分析中的应用
在信号处理和系统分析中, 微分方程用于描述系统的动态行为. 例如:
- 电路分析: 使用微分方程描述电路中的电压和电流关系.
- 滤波器设计: 使用微分方程设计模拟滤波器, 如巴特沃斯滤波器和切比雪夫滤波器.
- 控制系统分析: 使用微分方程分析控制系统的稳定性和响应.
0.9 数学分析(Mathematical Analysis)
数学分析是傅里叶变换中的基础, 因为傅里叶变换涉及到函数的极限、连续性、可微性和可积性等概念. 需要掌握极限、连续性、可微性、可积性、一致收敛性以及函数空间等.
0.9.1 极限(Limit)
极限是数学分析中的基本概念, 描述函数在某一点附近的值的趋势. 极限的定义为:
lim
x
→
a
f
(
x
)
=
L
\lim_{x \to a} f(x) = L
x→alimf(x)=L
表示当
x
x
x 接近
a
a
a 时, 函数
f
(
x
)
f(x)
f(x) 的值接近
L
L
L.
0.9.2 连续性(Continuity)
连续性描述函数在某一点的值是否等于该点的极限值. , 如果:
lim
x
→
a
f
(
x
)
=
f
(
a
)
\lim_{x \to a} f(x) = f(a)
x→alimf(x)=f(a)
存在, 那么函数
f
(
x
)
f(x)
f(x) 在点
a
a
a 处连续. 连续函数在区间上的性质包括有界性、最大值和最小值定理、介值定理等.
0.9.3.1 有界性(Boundedness)
连续函数在闭区间上是有界的. 这意味着存在实数
M
M
M 和
m
m
m, 使得对于闭区间
[
a
,
b
]
[a, b]
[a,b] 上的任意
x
x
x, 都有:
m
≤
f
(
x
)
≤
M
m \leq f(x) \leq M
m≤f(x)≤M
这个性质保证了连续函数在闭区间上不会无限增大或减小.
0.9.3.2 最大值和最小值定理(Extreme Value Theorem)
连续函数在闭区间上一定存在最大值和最小值. 即, 对于所有
x
∈
[
a
,
b
]
x \in [a, b]
x∈[a,b] 存在
c
c
c 和
d
d
d 在闭区间
[
a
,
b
]
[a, b]
[a,b] 内, 使得:
f
(
c
)
≤
f
(
x
)
≤
f
(
d
)
f(c) \leq f(x) \leq f(d) \quad
f(c)≤f(x)≤f(d)
这个性质保证了连续函数在闭区间上一定有最高点和最低点.
0.9.3.3 介值定理(Intermediate Value Theorem)
连续函数在闭区间上满足介值定理. 这意味着如果
f
(
a
)
f(a)
f(a) 和
f
(
b
)
f(b)
f(b) 是连续函数
f
f
f 在闭区间
[
a
,
b
]
[a, b]
[a,b] 两端的值, 那么对于任何介于
f
(
a
)
f(a)
f(a) 和
f
(
b
)
f(b)
f(b) 之间的实数
y
y
y, 至少在
(
a
,
b
)
(a, b)
(a,b) 内存在一点
c
c
c, 使得:
f
(
c
)
=
y
f(c) = y
f(c)=y
这个性质保证了连续函数在闭区间内可以取到其端点值之间的任何值.
0.9.3 可微性(Differentiability)
可微性描述函数在某一点的导数是否存在. 如果:
f
′
(
a
)
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
f′(a)=h→0limhf(a+h)−f(a)
存在, 那么函数
f
(
x
)
f(x)
f(x) 在点
a
a
a 处可微. 可微函数在区间上的性质包括中值定理、罗尔定理、泰勒定理等.
0.9.3.1 中值定理(Mean Value Theorem)
中值定理是微积分中的一个基本定理, 它描述了可微函数在闭区间上的平均变化率与某一点的瞬时变化率之间的关系. 如果函数
f
f
f 在闭区间
[
a
,
b
]
[a, b]
[a,b] 上连续, 在开区间
(
a
,
b
)
(a, b)
(a,b) 上可微, 则存在至少一点
c
c
c 在
(
a
,
b
)
(a, b)
(a,b) 内, 使得:
f
′
(
c
)
=
f
(
b
)
−
f
(
a
)
b
−
a
f'(c) = \frac{f(b) - f(a)}{b - a}
f′(c)=b−af(b)−f(a)
这个性质保证了可微函数在闭区间上的平均变化率等于某一点的导数.
0.9.3.2 罗尔定理(Rolle’s Theorem)
罗尔定理是中值定理的一个特例, 它描述了可微函数在闭区间上的端点值相等时的性质. 如果函数
f
f
f 在闭区间
[
a
,
b
]
[a, b]
[a,b] 上连续, 在开区间
(
a
,
b
)
(a, b)
(a,b) 上可微, 且
f
(
a
)
=
f
(
b
)
f(a) = f(b)
f(a)=f(b), 则存在至少一点
c
c
c 在
(
a
,
b
)
(a, b)
(a,b) 内, 使得:
f
′
(
c
)
=
0
f'(c) = 0
f′(c)=0
这个性质保证了可微函数在闭区间上的端点值相等时, 至少存在一点的导数为零.
0.9.3.3 泰勒定理(Taylor’s Theorem)
泰勒定理是微积分中的一个基本定理, 它描述了可微函数在某一点附近的局部行为. 如果函数
f
f
f 在点
a
a
a 处
n
n
n 阶可微, 则存在一个
n
n
n 阶多项式
P
n
(
x
)
P_n(x)
Pn(x) 和一个余项
R
n
(
x
)
R_n(x)
Rn(x), 使得:
f
(
x
)
=
P
n
(
x
)
+
R
n
(
x
)
f(x) = P_n(x) + R_n(x)
f(x)=Pn(x)+Rn(x)
其中
P
n
(
x
)
P_n(x)
Pn(x) 是
f
f
f 在
a
a
a 处的泰勒多项式,
R
n
(
x
)
R_n(x)
Rn(x) 是余项, 表示
f
f
f 与
P
n
(
x
)
P_n(x)
Pn(x) 之间的误差.
0.9.4 可积性(Integrability)
可积性描述函数在某个区间上的积分是否存在. 如果:
∫
a
b
f
(
x
)
d
x
\int_a^b f(x) \, dx
∫abf(x)dx
存在, 那么函数
f
(
x
)
f(x)
f(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上可积. 可积函数的性质包括线性性质、可加性、绝对值性质等.
0.9.4.1 线性性质(Linearity)
可积函数的线性性质表明, 如果函数
f
f
f 和
g
g
g 在区间
[
a
,
b
]
[a, b]
[a,b] 上可积, 且
c
c
c 和
d
d
d 是常数, 则函数
c
f
+
d
g
cf + dg
cf+dg 也在
[
a
,
b
]
[a, b]
[a,b] 上可积, 且:
∫
a
b
(
c
f
(
x
)
+
d
g
(
x
)
)
d
x
=
c
∫
a
b
f
(
x
)
d
x
+
d
∫
a
b
g
(
x
)
d
x
\int_a^b (cf(x) + dg(x)) \, dx = c \int_a^b f(x) \, dx + d \int_a^b g(x) \, dx
∫ab(cf(x)+dg(x))dx=c∫abf(x)dx+d∫abg(x)dx
这个性质表明积分运算与线性组合是可交换的.
0.9.4.2 可加性(Additivity)
可积函数的可加性表明, 如果函数
f
f
f 在区间
[
a
,
b
]
[a, b]
[a,b] 上可积, 且
c
c
c 是
[
a
,
b
]
[a, b]
[a,b] 内的任意点, 则:
∫
a
b
f
(
x
)
d
x
=
∫
a
c
f
(
x
)
d
x
+
∫
c
b
f
(
x
)
d
x
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx
∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx
这个性质表明积分运算可以分解为子区间的积分之和.
0.9.4.3 绝对值性质(Absolute Value Property)
可积函数的绝对值性质表明, 如果函数
f
f
f 在区间
[
a
,
b
]
[a, b]
[a,b] 上可积, 则:
∣
∫
a
b
f
(
x
)
d
x
∣
≤
∫
a
b
∣
f
(
x
)
∣
d
x
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx
∫abf(x)dx
≤∫ab∣f(x)∣dx
这个性质表明积分的绝对值小于等于绝对值的积分.
0.9.5 一致收敛性(Uniform Convergence)
一致收敛性描述函数序列或级数在某个区间上的收敛性. 如果:
lim
n
→
∞
sup
x
∈
[
a
,
b
]
∣
f
n
(
x
)
−
f
(
x
)
∣
=
0
,
\lim_{n \to \infty} \sup_{x \in [a, b]} |f_n(x) - f(x)| = 0,
n→∞limx∈[a,b]sup∣fn(x)−f(x)∣=0,
那么函数序列
f
n
(
x
)
f_n(x)
fn(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上一致收敛到函数
f
(
x
)
f(x)
f(x). 一致收敛的函数序列或级数具有许多良好的性质, 如可交换极限、积分和求导等.
0.9.5.1 可交换极限(Interchange of Limits)
如果函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在区间
I
I
I 上一致收敛到函数
f
(
x
)
f(x)
f(x), 则可以交换极限运算和函数运算. 例如, 如果
lim
x
→
c
f
n
(
x
)
=
L
n
\lim_{x \to c} f_n(x) = L_n
limx→cfn(x)=Ln 对于每个
n
n
n 都成立, 且
lim
n
→
∞
L
n
=
L
\lim_{n \to \infty} L_n = L
limn→∞Ln=L, 则:
lim
x
→
c
(
lim
n
→
∞
f
n
(
x
)
)
=
lim
n
→
∞
(
lim
x
→
c
f
n
(
x
)
)
=
L
\lim_{x \to c} \left( \lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left( \lim_{x \to c} f_n(x) \right) = L
x→clim(n→∞limfn(x))=n→∞lim(x→climfn(x))=L
0.9.5.2 可交换积分(Interchange of Integrals)
如果函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在区间
[
a
,
b
]
[a, b]
[a,b] 上一致收敛到函数
f
(
x
)
f(x)
f(x), 则可以交换积分运算和极限运算. 即:
∫
a
b
(
lim
n
→
∞
f
n
(
x
)
)
d
x
=
lim
n
→
∞
∫
a
b
f
n
(
x
)
d
x
\int_a^b \left( \lim_{n \to \infty} f_n(x) \right) \, dx = \lim_{n \to \infty} \int_a^b f_n(x) \, dx
∫ab(n→∞limfn(x))dx=n→∞lim∫abfn(x)dx
0.9.5.3 可交换求导(Interchange of Derivatives)
如果函数序列
{
f
n
(
x
)
}
\{f_n(x)\}
{fn(x)} 在区间
I
I
I 上一致收敛到函数
f
(
x
)
f(x)
f(x), 且每个
f
n
(
x
)
f_n(x)
fn(x) 都在
I
I
I 上可导, 且导数序列
{
f
n
′
(
x
)
}
\{f_n'(x)\}
{fn′(x)} 也在
I
I
I 上一致收敛到函数
g
(
x
)
g(x)
g(x), 则
f
(
x
)
f(x)
f(x) 在
I
I
I 上可导, 且:
f
′
(
x
)
=
lim
n
→
∞
f
n
′
(
x
)
=
g
(
x
)
f'(x) = \lim_{n \to \infty} f_n'(x) = g(x)
f′(x)=n→∞limfn′(x)=g(x)
0.9.6 函数空间(Function Space)
函数空间是所有满足一定条件的函数的集合. 常见的函数空间包括:
- 连续函数空间(Continuous Function Space): 所有在某个区间上连续的函数的集合.
- 可积函数空间(Integrable Function Space): 所有在某个区间上可积的函数的集合.
- 平方可积函数空间(Square-Integrable Function Space): 所有在某个区间上平方可积的函数的集合, 即 L 2 L^2 L2 空间.
0.9.7 傅里叶变换中的应用
在傅里叶变换中, 数学分析的概念用于描述函数的性质和傅里叶变换的性质. 例如:
- 傅里叶级数: 将周期函数表示为正弦和余弦函数的无穷级数, 需要函数在周期内可积.
- 傅里叶变换: 将非周期函数从时域转换到频域, 需要函数在实数域上可积.
0.10 抽象代数(Abstract Algebra)
抽象代数是离散傅里叶变换(DFT)和快速傅里叶变换(FFT)中的基础, 因为这些变换可以表示为在特定代数结构上的运算. 需要掌握群、环、域、多项式、模以及线性代数的推广等.
0.10.1 群(Group)
群是抽象代数中的基本概念, 是一个集合 G G G 配备一个二元运算 ∗ * ∗, 满足以下性质:
- 封闭性: 对于所有 a , b ∈ G a, b \in G a,b∈G, 有 a ∗ b ∈ G a * b \in G a∗b∈G.
- 结合律: 对于所有 a , b , c ∈ G a, b, c \in G a,b,c∈G, 有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a * b) * c = a * (b * c) (a∗b)∗c=a∗(b∗c).
- 单位元: 存在一个元素 e ∈ G e \in G e∈G, 使得对于所有 a ∈ G a \in G a∈G, 有 e ∗ a = a ∗ e = a e * a = a * e = a e∗a=a∗e=a.
- 逆元: 对于每个 a ∈ G a \in G a∈G, 存在一个元素 b ∈ G b \in G b∈G, 使得 a ∗ b = b ∗ a = e a * b = b * a = e a∗b=b∗a=e.
0.10.2 环(Ring)
环是一个集合 R R R 配备两个二元运算 + + + 和 ⋅ \cdot ⋅, 满足以下性质:
- 加法群: ( R , + ) (R, +) (R,+) 是一个交换群.
- 乘法结合律: 对于所有 a , b , c ∈ R a, b, c \in R a,b,c∈R, 有 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (a⋅b)⋅c=a⋅(b⋅c).
- 乘法对加法的分配律: 对于所有 a , b , c ∈ R a, b, c \in R a,b,c∈R, 有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a \cdot (b + c) = a \cdot b + a \cdot c a⋅(b+c)=a⋅b+a⋅c 和 ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (a + b) \cdot c = a \cdot c + b \cdot c (a+b)⋅c=a⋅c+b⋅c.
0.10.4 域(Field)
域是一个环 F F F 配备乘法逆元, 满足以下性质:
- 乘法交换律: 对于所有 a , b ∈ F a, b \in F a,b∈F, 有 a ⋅ b = b ⋅ a a \cdot b = b \cdot a a⋅b=b⋅a.
- 乘法逆元: 对于每个非零元素 a ∈ F a \in F a∈F, 存在一个元素 b ∈ F b \in F b∈F, 使得 a ⋅ b = b ⋅ a = 1 a \cdot b = b \cdot a = 1 a⋅b=b⋅a=1.
0.10.5 多项式(Polynomial)
多项式是代数中的基本概念, 表示为变量和系数的有限和. 多项式在环和域上都有定义, 例如:
p
(
x
)
=
a
n
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
1
x
+
a
0
p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
p(x)=anxn+an−1xn−1+⋯+a1x+a0
其中
a
i
a_i
ai 是系数,
x
x
x 是变量.
0.10.6 模(Module)
模是环上的向量空间, 是一个集合 M M M 配备一个环 R R R 和一个标量乘法运算 ⋅ \cdot ⋅, 满足以下性质:
- 加法群: ( M , + ) (M, +) (M,+) 是一个交换群.
- 标量乘法结合律: 对于所有 r , s ∈ R r, s \in R r,s∈R 和 m ∈ M m \in M m∈M, 有 ( r ⋅ s ) ⋅ m = r ⋅ ( s ⋅ m ) (r \cdot s) \cdot m = r \cdot (s \cdot m) (r⋅s)⋅m=r⋅(s⋅m).
- 标量乘法对加法的分配律: 对于所有 r ∈ R r \in R r∈R 和 m , n ∈ M m, n \in M m,n∈M, 有 r ⋅ ( m + n ) = r ⋅ m + r ⋅ n r \cdot (m + n) = r \cdot m + r \cdot n r⋅(m+n)=r⋅m+r⋅n.
- 标量乘法的单位元: 对于所有 m ∈ M m \in M m∈M, 有 1 ⋅ m = m 1 \cdot m = m 1⋅m=m.
0.10.7 线性代数的推广
线性代数是研究向量空间和线性变换的数学分支. 在抽象代数中, 线性代数的概念被推广到模和域上. 例如, 向量空间是域上的模, 线性变换是模上的同态.
0.10.8 离散傅里叶变换和快速傅里叶变换中的应用
离散傅里叶变换(DFT)和快速傅里叶变换(FFT)可以表示为在特定代数结构上的运算. 例如, DFT 可以表示为在复数域上的矩阵乘法, 而 FFT 算法利用了复数域的代数性质来减少计算量.
0.11 数论(Number Theory)
数论是快速傅里叶变换(FFT)中的基础, 因为 FFT 算法涉及到整数的性质和模运算. 需要掌握整数的性质、模运算、最大公约数、最小公倍数以及素数等.
0.11.1 整数的性质(Properties of Integers)
整数是数学中的基本概念, 包括正整数、负整数和零. 整数的性质包括:
- 加法和乘法的封闭性: 两个整数的和和积仍然是整数.
- 加法和乘法的结合律: 对于所有整数 a , b , c a, b, c a,b,c, 有 ( a + b ) + c = a + ( b + c ) (a + b) + c = a + (b + c) (a+b)+c=a+(b+c) 和 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (a⋅b)⋅c=a⋅(b⋅c).
- 加法和乘法的交换律: 对于所有整数 a , b a, b a,b, 有 a + b = b + a a + b = b + a a+b=b+a 和 a ⋅ b = b ⋅ a a \cdot b = b \cdot a a⋅b=b⋅a.
- 分配律: 对于所有整数 a , b , c a, b, c a,b,c, 有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a \cdot (b + c) = a \cdot b + a \cdot c a⋅(b+c)=a⋅b+a⋅c.
0.11.2 模运算(Modular Arithmetic)
模运算是数论中的基本概念, 表示整数除以某个正整数后的余数. 对于整数 a a a 和正整数 n n n, a a a 模 n n n 的余数表示为 a m o d n a \mod n amodn.
0.11.3 最大公约数(Greatest Common Divisor, GCD)
最大公约数是两个或多个整数的最大正整数因子. 对于整数 a a a 和 b b b, 它们的最大公约数表示为 gcd ( a , b ) \gcd(a, b) gcd(a,b).
0.11.4 最小公倍数(Least Common Multiple, LCM)
最小公倍数是两个或多个整数的最小正整数倍数. 对于整数 a a a 和 b b b, 它们的最小公倍数表示为 lcm ( a , b ) \text{lcm}(a, b) lcm(a,b).
0.11.5 素数(Prime Number)
素数是大于 1 的正整数, 除了 1 和它本身外没有其他正整数因子. 素数在数论中具有重要地位, 因为任何正整数都可以唯一地分解为素数的乘积.
0.11.6 快速傅里叶变换中的应用
快速傅里叶变换(FFT)算法涉及到整数的性质和模运算. 例如, FFT 算法中的旋转因子 W N = e − i 2 π N W_N = e^{-i \frac{2\pi}{N}} WN=e−iN2π 是复数, 但它的幂次 W N k W_N^k WNk 可以用模运算来表示. 此外, FFT 算法的效率依赖于 N N N 的因子分解, 而素数和最大公约数等概念在因子分解中起着关键作用.
0.12 函数的点积(内积)、模长、投影与归一化
对于两个函数(无论是离散还是连续函数), 可以定义类似于向量的点积(内积)、模长、投影和归一化等概念.
0.12.1 点积(内积)
-
实数域: 对于两个函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x), 在区间 [ a , b ] [a, b] [a,b] 上的内积定义为:
⟨ f , g ⟩ = ∫ a b f ( x ) g ( x ) d x \langle f, g \rangle = \int_{a}^{b} f(x) \, g(x) \, dx ⟨f,g⟩=∫abf(x)g(x)dx
如果函数是离散的, 内积可以表示为:
⟨ f , g ⟩ = ∑ i f ( x i ) g ( x i ) \langle f, g \rangle = \sum_{i} f(x_i) \, g(x_i) ⟨f,g⟩=i∑f(xi)g(xi)
其中 x i x_i xi 是离散点. -
复数域: 对于两个复值函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x), 在区间 [ a , b ] [a, b] [a,b] 上的内积定义为:
⟨ f , g ⟩ = ∫ a b f ( x ) g ( x ) ‾ d x \langle f, g \rangle = \int_{a}^{b} f(x) \, \overline{g(x)} \, dx ⟨f,g⟩=∫abf(x)g(x)dx
其中, g ( x ) ‾ \overline{g(x)} g(x) 表示 g ( x ) g(x) g(x) 的复共轭. 对于两个离散复数序列 f = [ f 1 , f 2 , … , f n ] \mathbf{f} = [f_1, f_2, \ldots, f_n] f=[f1,f2,…,fn] 和 g = [ g 1 , g 2 , … , g n ] \mathbf{g} = [g_1, g_2, \ldots, g_n] g=[g1,g2,…,gn], 其内积定义为⟨ f , g ⟩ = ∑ i = 1 n f i g i ‾ \langle \mathbf{f}, \mathbf{g} \rangle = \sum_{i = 1}^{n} f_i \, \overline{g_i} ⟨f,g⟩=i=1∑nfigi
其中, g i ‾ \overline{g_i} gi 表示 g i g_i gi 的复共轭.
性质:
- (共轭)对称性: ⟨ f , g ⟩ = ⟨ g , f ⟩ ‾ \langle f, g \rangle = \overline{\langle g, f \rangle} ⟨f,g⟩=⟨g,f⟩, 实数域为 ⟨ f , g ⟩ = ⟨ g , f ⟩ \langle f, g \rangle = \langle g, f \rangle ⟨f,g⟩=⟨g,f⟩
- 线性: ⟨ a f + b g , h ⟩ = a ⟨ f , h ⟩ + b ⟨ g , h ⟩ \langle af + bg, h \rangle = a \langle f, h \rangle + b \langle g, h \rangle ⟨af+bg,h⟩=a⟨f,h⟩+b⟨g,h⟩, 其中 a a a 和 b b b 是常数.
- 正定性: ⟨ f , f ⟩ ≥ 0 \langle f, f \rangle \geq 0 ⟨f,f⟩≥0, 且仅当 f ( x ) = 0 f(x) = 0 f(x)=0 时, ⟨ f , f ⟩ = 0 \langle f, f \rangle = 0 ⟨f,f⟩=0.
几何意义: 点积可以用于衡量两个函数之间的相似性. 如果点积为零, 说明两个函数在定义域上正交.
0.12.2 模长
函数
f
(
x
)
f(x)
f(x) 的模长(范数)定义为:
∥
f
∥
=
⟨
f
,
f
⟩
=
∫
a
b
f
(
x
)
2
d
x
\| f \| = \sqrt{\langle f, f \rangle} = \sqrt{\int_{a}^{b} f(x)^2 \, dx}
∥f∥=⟨f,f⟩=∫abf(x)2dx
对于离散函数, 模长为:
∥
f
∥
=
∑
i
f
(
x
i
)
2
\| f \| = \sqrt{\sum_{i} f(x_i)^2}
∥f∥=i∑f(xi)2
性质:
- 非负性: ∥ f ∥ ≥ 0 \| f \| \geq 0 ∥f∥≥0, 且当且仅当 f ( x ) = 0 f(x) = 0 f(x)=0 时, ∥ f ∥ = 0 \| f \| = 0 ∥f∥=0
- 齐次性: ∥ α f ∥ = ∣ α ∣ ∥ f ∥ \| \alpha f \| = |\alpha| \| f \| ∥αf∥=∣α∣∥f∥, 其中 α \alpha α 是常数
几何意义: 模长表示函数在定义域上的“长度”或“大小”, 是函数能量的一种度量.
0.12.4 归一化
归一化是将函数的模长标准化为 1 的过程. 对于函数
f
(
x
)
f(x)
f(x), 归一化后的函数
f
^
(
x
)
\hat{f}(x)
f^(x) 为:
f
^
(
x
)
=
f
(
x
)
∥
f
∥
\hat{f}(x) = \frac{f(x)}{\| f \|}
f^(x)=∥f∥f(x)
归一化后的函数满足:
∥
f
^
∥
=
1
\| \hat{f} \| = 1
∥f^∥=1
几何意义: 归一化后的函数模长为 1, 表示将函数“缩放”到单位长度, 便于比较不同函数的方向, 消除长度差异带来的影响. .
0.12.3 投影
函数
f
(
x
)
f(x)
f(x) 在函数
g
(
x
)
g(x)
g(x) 上的投影可以通过内积来定义. 投影公式为:
proj
g
f
=
g
⟨
g
,
g
⟩
⟨
f
,
g
⟩
\text{proj}_{g} f = \frac{g}{\langle g, g \rangle} \langle f, g \rangle
projgf=⟨g,g⟩g⟨f,g⟩
它表示
f
(
x
)
f(x)
f(x) 在
g
(
x
)
g(x)
g(x) 方向上的分量.
几何意义: 在函数空间中, 投影可以看作是将一个函数分解为与另一个函数平行的部分和垂直的部分. 投影部分是与 g ( x ) g(x) g(x) 最接近的 f ( x ) f(x) f(x) 的分量. 它可以理解为 f f f 与归一化后的 g g g 的点积.