欧拉函数(1-N中与N互质的数的个数,记为φ(n))
(1)N=p1^a1 * p2^a2 * … pk^ak(pi为N的质因子,ai为指数),公式:φ(n)= N * (1-1/p1) * (1-1/p2) * . …*(1-1/pk)
/*
给定 n 个正整数 ai,请你求出每个数的欧拉函数。
*/
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
typedef long long ll;
typedef unsigned long long ull;
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)//分解质因子
{
int a;
scanf("%d",&a);
int res=a;
for(int i=2;i<=a/i;i++)
{
if(a%i==0)
{
res=res/i*(i-1);//防止出现小数,所有先整除i
while(a%i==0) a/=i;
}
}
if(a>1) res=res/a*(a-1);
printf("%d\n",res);
}
return 0;
}
(2)1-N中每个数的欧拉函数
如果x%p=0(p是质数)那么φ(x * p)= φ(x) * p ,因为x*p和x的质因子是一样的,p也是x的质因子
如果x%p≠0(p是质数),那么φ(x * p)= φ(x) * p * (1-1/p)=φ(x) * (p-1),因为x * p比x只是多了一个p的质因子,其余的质因子是一样的
/*
给定一个正整数 n,求 1~n 中每个数的欧拉函数之和。
*/
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
typedef long long ll;
typedef unsigned long long ull;
int prime[N],cnt,phi[N],st[N];
ll get_eulers(int n)//筛质数的模板
{
phi[1]=1;//1的欧拉函数是1
for(int i=2;i<=n;i++)
{
if(!st[i])
{
prime[cnt++]=i;
phi[i]=i-1;
}
for(int j=0;prime[j]<=n/i;j++)
{
st[prime[j]*i]=1;
if(i%prime[j]==0)//i*prime[j]和i的质因子是一样的
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);//i*prime[j]比i多了一个prime[j]的质因子
}
}
ll res=0;
for(int i=1;i<=n;i++)
{
res+=phi[i];
}
return res;
}
int main()
{
int n;
scanf("%d",&n);
printf("%lld",get_eulers(n));
return 0;
}