欧拉函数(1-N中与N互质的个数)

欧拉函数(1-N中与N互质的数的个数,记为φ(n))

(1)N=p1^a1 * p2^a2 * … pk^ak(pi为N的质因子,ai为指数),公式:φ(n)= N * (1-1/p1) * (1-1/p2) * . …*(1-1/pk)

/*
给定 n 个正整数 ai,请你求出每个数的欧拉函数。
*/
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
typedef long long ll;
typedef unsigned long long ull;
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)//分解质因子
	{
		int a;
		scanf("%d",&a);
		int res=a;
		for(int i=2;i<=a/i;i++)
		{
			if(a%i==0)
			{
				res=res/i*(i-1);//防止出现小数,所有先整除i
				while(a%i==0) a/=i;
			}
		}
		if(a>1) res=res/a*(a-1);
		printf("%d\n",res);
	}
	return 0;
} 

(2)1-N中每个数的欧拉函数
如果x%p=0(p是质数)那么φ(x * p)= φ(x) * p ,因为x*p和x的质因子是一样的,p也是x的质因子
如果x%p≠0(p是质数),那么φ(x * p)= φ(x) * p * (1-1/p)=φ(x) * (p-1),因为x * p比x只是多了一个p的质因子,其余的质因子是一样的

/*
给定一个正整数 n,求 1~n 中每个数的欧拉函数之和。
*/
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
typedef long long ll;
typedef unsigned long long ull;
int prime[N],cnt,phi[N],st[N];
ll get_eulers(int n)//筛质数的模板
{
	phi[1]=1;//1的欧拉函数是1
	for(int i=2;i<=n;i++)
	{
		if(!st[i]) 
		{
			prime[cnt++]=i;
			phi[i]=i-1;
		}
		for(int j=0;prime[j]<=n/i;j++)
		{
			st[prime[j]*i]=1;
			if(i%prime[j]==0)//i*prime[j]和i的质因子是一样的
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			phi[i*prime[j]]=phi[i]*(prime[j]-1);//i*prime[j]比i多了一个prime[j]的质因子
		}
	}
	ll res=0;
	for(int i=1;i<=n;i++)
	{
		res+=phi[i];
	}
	return res;
}
int main()
{
	int n;
	scanf("%d",&n);
	printf("%lld",get_eulers(n));
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值