欧拉函数定义:对于所有的 a,b a , b ,若 gcd(a,b)=1 g c d ( a , b ) = 1 ,则称 a,b a , b 互质。
计算方式: [1,N] [ 1 , N ] 中与 N N 互质的数的个数被称为欧拉函数,记为 。
int phi(int n) {
int ans = n;
for (int i = 2; i <= sqrt(n); ++i) if (n % i == 0) {
ans = ans / i * (i-1);
while (n % i == 0) n /= i;
}
if (n > 1) ans = ans / n * (n-1);
return ans;
}
以下的代码以 O(NlogN) O ( N l o g N ) 复杂度求出 [2,N] [ 2 , N ] 中每个数的欧拉函数。
void euler(int n) {
for (int i = 2; i <= n; ++i) phi[i] = i;
for (int i = 2; i <= n; ++i) if (phi[i] == i)
for (int j = i; j <= n; j += i)
phi[j] = phi[j] / i * (i-1);
}
下面是黄学长的代码,利用线性筛法的思想在 O(N) O ( N ) 的时间内快速递推出 [2,N] [ 2 , N ] 中每个数的欧拉函数。
typedef long long ll;
const int maxn = 10000000 + 5;
int phi[maxn], pri[1000005], n, tot;
bool mark[maxn];
ll ans, sum[maxn];
void getphi() {
phi[1] = 1;
for (int i = 2; i <= n; i++) {
if (!mark[i]) { phi[i] = i - 1; pri[++tot] = i; }
for (int j = 1; j <= tot; j++) {
int x = pri[j];
if (i*x>n)break;
mark[i*x] = 1;
if (i%x == 0) { phi[i*x] = phi[i] * x; break; }
else phi[i*x] = phi[i] * phi[x];
}
}
}
给定整数N,求 1≤x,y≤N 1 ≤ x , y ≤ N 且 Gcd(x,y) G c d ( x , y ) 为素数的数对 (x,y) ( x , y ) 有多少对.
#define N 10000005
using namespace std;
int n,p,tot;
int phi[N],pri[1000005];
bool mark[N];
ll ans,sum[N];
void getphi() {
phi[1]=1;
for(int i=2;i<=n;i++) {
if(!mark[i]){phi[i]=i-1;pri[++tot]=i;}
for(int j=1;j<=tot;j++) {
int x=pri[j];
if(i*x>n)break;
mark[i*x]=1;
if(i%x==0){phi[i*x]=phi[i]*x;break;}
else phi[i*x]=phi[i]*phi[x];
}
}
}
int main() {
scanf("%d",&n);
getphi();
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+phi[i];
for(int i=1;i<=tot;i++)
ans+=sum[n/pri[i]]*2-1;
printf("%lld",ans);
return 0;
}