2021 ICPC Jinan C Optimal Strategy

C Optimal Strategy - 代码见此

先从游戏分析:

1、如果当前情况为:物品中最大值 A_max 的个数 C(A_max) 为奇数,那么此回合玩家是一定要拿 A_max 的,并将 C(A_max) 变为偶数传给对方。此后,单考虑值为 A_max 的物品,该玩家一定会比对手多拿一次,符合最优情况。

2、若当前物品中最大值 A_max 的个数 C(A_max) 为偶数,
显然,双方都遵循以下最优决策:
①上一轮对手拿了一次 A_max , 此回合我必须也拿A_max(如果还能拿A_max的话)。
②上一轮对手没有拿 A_max(或者C(A_max)变成零),那我可以任意拿一个物品,值随意。

然后分析计数:

我们将物品按不同值的个数存储好,并按值从小到大的顺序计算,动态规划的思想来模拟方案数

首先定义 f [ i ] 为只用小于等于 i 的元素,能构成的最优游戏方案数

为了方便理解,我们对输入的序列排一下序(代码实现不必排序)
假设某一排序后的输入为: 1 1 1 4 4 5,那么 f [ 1 ] 代表1 1 1三个元素的子序列的最优游戏方案数,同理 f [ 4 ] 代表1 1 1 4 4五个元素的子序列的最优游戏方案数。

从最优决策可得,我们将所有相同元素都两两配对,即无论哪一方拿了其中一个,下一轮玩家一定是拿另一个,则配对好的两个相同元素放在一起考虑。
那么在遍历过程中,
①假设当前处理到了所有值为 i 的元素,那么所有小于 i 的元素都不必再按两两配对考虑, 因为它们任何一个都不是此时序列中的最大值,可以任意顺序取走。
②由于是从小到大遍历,当前 i 一定比前面的都大, 那么可以随便插入到 f [ i-1 ]的任何一种方案,对应的序列中,的任何一个位置。
若 C[ i ] 为奇数, 那么一定是在序列最前面放一个 i ,然后 C[ i ] 变成了偶数,并配对成了 X = C[ i ] / 2 对, 假设 sum[ i-1 ] 是所有小于 i 的元素的总个数,那么 f [ i ] = f [ i-1 ] × C(sum[ i-1 ] + X,X)× A(C[ i ],C[ i ])

代码见此

以下是两种典例,图文结合理解更佳
请添加图片描述
请添加图片描述

### 回答1: 2021年江西省大学生程序设计竞赛是一项针对大学生的编程竞赛活动。该竞赛旨在提高大学生的编程能力和创新思维,促进计算机科学技术的发展和应用。竞赛内容包括算法设计、程序实现、数据结构等方面,参赛选手需要在规定时间内完成指定的编程任务。这是一项非常有挑战性和有意义的竞赛,对于提高大学生的编程水平和实践能力有很大的帮助。 ### 回答2: 2021年3月14日,江西省大学生程序设计竞赛(ICPC)在江西师范大学举行。本次比赛由江西省计算机学会主办,吉林大学博爱学院赞助,共有15支队伍参赛,此次比赛的主要目的是提高学生们的程序设计与算法能力,同时为江西省选出优秀的程序设计人才。 比赛采用ACM国际竞赛的形式,共有12个题目,考察了参赛选手在算法设计、程序实现、数据结构、编程能力等方面的综合素质。比赛时间长达5个小时,选手需要在规定时间内完成尽可能多的题目,并在保证正确性的同时尽量节省时间。 2019年江苏省大学生程序设计竞赛的比赛题分别从算法设计基础、计算几何、动态规划、搜索、数据结构等方面出题,难度适中。所有参赛队伍均在赛场上充分展示了自己的才华和程序设计能力,赛场上紧张的气氛、激烈的角逐使得比赛更加刺激和有趣。 此次比赛从选拔、组织、管理等方面是非常成功的,既展示了江西省大学生程序设计的风采,也为江西省和国家培养了更多的优秀程序设计人才。希望在未来的竞赛中,江西省程序设计的水平能够更上一层楼,培养更多的优秀程序设计人才。 ### 回答3: 2021年江西省大学生程序设计竞赛于2021年11月7日在南昌大学体育馆举行,来自江西省内的30多所高校的近500支队伍参赛。本次比赛分为省赛和校内赛两个阶段,对参赛队伍进行初步筛选和终极评选。 比赛分为解决8道问题的组成员和4道问题的单人组成员两部分,涵盖了计算几何、动态规划、图论、计算几何等多个领域,难度较高。比赛中,每个队伍有5个小时的时间解决问题,只能在计算机上编写代码解决问题,考验了参赛者的编程实力和团队协作能力。 比赛期间,裁判们在场内设立了各种问题的试题,比如“手工奶酪”、“最大独立集”、“调色板”等,每个问题都要求参赛者在规定时间内精确解决。裁判们在以上操作的基础上,继续引入了随机性、收缩性和对称性等要素,使比赛题目更具挑战性。 本次比赛的成功举办,标志着江西省程序设计竞赛赛事的正式起航,并为江西省内高校的程序设计爱好者提供了一个互相交流、共同提高的平台。同时,也为将来江西省大学生程序设计竞赛的举办打下了坚实的基础。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_45928596

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值