PTA1019
A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.
Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N>0 in base b≥2, where it is written in standard notation with k+1 digits ai as ∑i=0 k(aibi). Here, as usual, 0≤ai<b for all i and ak is non-zero. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 in any base and is also palindromic by definition.
Given any positive decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.
Input Specification:
Each input file contains one test case. Each case consists of two positive numbers N and b, where 0<N≤10^9 is the decimal number and 2≤b≤ 10^9 is the base. The numbers are separated by a space.
Output Specification:
For each test case, first print in one line Yes if N is a palindromic number in base b, or No if not. Then in the next line, print N as the number in base b in the form "a^k a^k−1… a 0 ". Notice that there must be no extra space at the end of output.
Sample Input 1:
27 2
Sample Output 1:
Yes
1 1 0 1 1
Sample Input 2:
121 5
Sample Output 2:
No
4 4 1
思路
将十进制数m转化为n进制数,判断转化后的n进制数是不是一个回文序列,并按位输出转化后的每一位。
#include<bits/stdc++.h>
using namespace std;
bool pan(vector<int> &a)
{
int size=a.size();
for(int i=0;i<size/2;i++)
{
if(a[i]!=a[size-i-1])
{
return false;
}
}
return true;
}
int main

这篇博客探讨了如何在不同的数值系统中判断回文数。首先介绍了回文数的概念,即正读反读都相同的数字。接着,通过两个编程实例展示了如何将十进制数转换为其他基数的数,并检查它们是否为回文。第一个例子涉及将十进制数转换为任意基数的回文数检测,第二个例子讲解了火星上的颜色编码系统,将十进制颜色值转换为十三进制并输出。最后,文章提供了一个处理哈利波特魔法世界货币进位问题的程序,演示了不同单位间的数值计算。
最低0.47元/天 解锁文章
1314

被折叠的 条评论
为什么被折叠?



