Leetcode:64.最小路径和

题目

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

原题链接
64.最小路径和

涉及知识点:动态规划

解题思路

这是一道典型的动态规划问题

首先,我们要判断题目所给的这个二维数组是不是空数组,如果是空数组,直接返回0。

接着,我们需要创建一个与原始数组规模一样的数组:dp[m][n],其中dp[i][j]表示从(0,0)点到(i,j)的最短路径。显然dp[0][0] = grid[0][0]

进一步,列出状态转移方程:

  • i=0 && j>0:dp[0][j]=dp[0][j-1]+grid[0][j]
  • i>0 && j=0:dp[i][0]=dp[i-1][0]+grid[i][0]
  • i>0 && j>0:dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1])+grid[i][j]

最后得到的dp[m-1][n-1]就是题目要求的最小路径和

AC代码

class Solution {
    public int minPathSum(int[][] grid) {
    	int m = grid.length;
    	int n = grid[0].length;
    	if(grid == null || m == 0 || n == 0)	return 0;
        int[][] dp = new int[m][n];
        dp[0][0] = grid[0][0];
        //边界
        for(int i=1; i<n; i++) {
        	dp[0][i] = dp[0][i-1]+grid[0][i];
        }
        for(int j=1; j<m; j++) {
        	dp[j][0] = dp[j-1][0]+grid[j][0];
        }
        for(int i=1; i<m; i++) {
        	for(int j=1; j<n; j++) {
        		dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1])+grid[i][j];
        	}
        }
        return dp[m-1][n-1];
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值