题目
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
- 选出任一 x,满足 0 < x < N 且 N % x == 0 。
- 用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。
原题地址:1025.除数博弈
解题思路
作为一个蒟蒻,刚开始看题是有点懵逼的,后来枚举了数字2~10的情况,发现结果很amazing呀。奇数都是false,偶数都是true,即如果是奇数,先选开局的必输,如果是偶数,先开局的必赢。接下来我们就验证一下这个猜测。
利用数学归纳法
显然,当N=2,和N=3时,我们的假设成立。
我们假设对于任意的N ≤ \leq ≤k,k ∈ N ∗ \in N^* ∈N∗,原假设均成立
当N=k+1时
(1)若k+1为奇数, 先手取的x必为奇数,奇减奇为偶数,且得到的那个偶数小于k,则先手的必输,输出为false。
(2)若k+1为偶数,A先手的取1,则得到k,为奇数,转换成另一人B先手开局为奇数的问题。由上述可得,B必输,进一步推出A获胜,输出为true。
综上:奇数输出false,偶数输出true。
AC代码
略(就是一个判断奇偶的问题)