Leetcode:1025. 除数博弈

题目

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

  • 选出任一 x,满足 0 < x < N 且 N % x == 0 。
  • 用 N - x 替换黑板上的数字 N 。

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。

原题地址:1025.除数博弈

解题思路

作为一个蒟蒻,刚开始看题是有点懵逼的,后来枚举了数字2~10的情况,发现结果很amazing呀。奇数都是false,偶数都是true,即如果是奇数,先选开局的必输,如果是偶数,先开局的必赢。接下来我们就验证一下这个猜测。


利用数学归纳法
显然,当N=2,和N=3时,我们的假设成立。

我们假设对于任意的N ≤ \leq k,k ∈ N ∗ \in N^* N,原假设均成立

当N=k+1时
(1)若k+1为奇数, 先手取的x必为奇数,奇减奇为偶数,且得到的那个偶数小于k,则先手的必输,输出为false。
(2)若k+1为偶数,A先手的取1,则得到k,为奇数,转换成另一人B先手开局为奇数的问题。由上述可得,B必输,进一步推出A获胜,输出为true。

综上:奇数输出false,偶数输出true。

AC代码

略(就是一个判断奇偶的问题)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值