问题二:蓝桥杯(拿金币)

动态规划是一种通过拆分问题、优化子问题解决方案并通过这些子问题的解来解决整个问题的方法。它特别适合用于解决具有重叠子问题和最优子结构特性的问题。

解题思路

对于“在一个N x N的方格中收集金币”的问题,解题思路如下:

  1. 状态定义:定义dp[i][j]为从方格的左上角走到(i, j)位置时,能够收集到的最多金币数量。

  2. 状态转移方程dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j],即当前位置的最大金币数等于从左边来和从上面来两个方向的最大值加上当前位置的金币数。

  3. 初始化:初始化dp数组的第一行和第一列,因为这些位置只能单向到达。

  4. 计算顺序:从左上角开始,按行或按列逐渐计算到右下角。

为什么使用动态规划

  1. 重叠子问题:计算到达任何一个特定格子的最优解时,会重复使用到达其相邻格子的最优解。

  2. 最优子结构:到达当前格子的最优路径依赖于到达其相邻格子(上方或左侧)的最优路径。

时间复杂度和空间复杂度

  • 时间复杂度:O(N^2),因为需要遍历N x N的方格每个位置计算最大金币数。

  • 空间复杂度:O(N^2),存储每个位置的最大金币数需要一个N x N的二维数组。

复杂度计算步骤

  1. 时间复杂度:每个格子的计算只需要常数时间(进行一次比较和一次加法),总共有N*N个格子,因此时间复杂度为N*N

  2. 空间复杂度:使用了一个与输入方格相同大小的二维数组来存储中间结果,因此空间复杂度与方格大小直接相关,为N*N

Python代码

def max_gold(grid):
    n = len(grid)
    dp = [[0 for _ in range(n)] for _ in range(n)]
    dp[0][0] = grid[0][0]
    
    for i in range(1, n):
        dp[i][0] = dp[i-1][0] + grid[i][0]
        dp[0][i] = dp[0][i-1] + grid[0][i]
    
    for i in range(1, n):
        for j in range(1, n):
            dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j]
    
    return dp[n-1][n-1]

if __name__ == "__main__":
    n = int(input())
    grid = [list(map(int, input().split())) for _ in range(n)]
    print(max_gold(grid))

  • 9
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值