LeetCode-2608. 图中的最短环【广度优先搜索 图,腾讯面试真题】

LeetCode-2608. 图中的最短环【广度优先搜索 图,腾讯面试真题】

题目描述:

现有一个含 n 个顶点的 双向 图,每个顶点按从 0 到 n - 1 标记。图中的边由二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和 vi 之间存在一条边。每对顶点最多通过一条边连接,并且不存在与自身相连的顶点。

返回图中 最短 环的长度。如果不存在环,则返回 -1 。

环 是指以同一节点开始和结束,并且路径中的每条边仅使用一次。

示例 1:
在这里插入图片描述
输入:n = 7, edges = [[0,1],[1,2],[2,0],[3,4],[4,5],[5,6],[6,3]]
输出:3
解释:长度最小的循环是:0 -> 1 -> 2 -> 0

示例 2:
在这里插入图片描述
输入:n = 4, edges = [[0,1],[0,2]]
输出:-1
解释:图中不存在循环

提示:

2 <= n <= 1000
1 <= edges.length <= 1000
edges[i].length == 2
0 <= ui, vi < n
ui != vi
不存在重复的边

解题思路一:【一图秒懂】枚举起点跑 BFS

题解参考
在这里插入图片描述
问:为什么说发现一个已经入队的点,就说明有环?

答:这说明到同一个点有两条不同的路径,这两条路径组成了一个环。

class Solution:
    def findShortestCycle(self, n: int, edges: List[List[int]]) -> int:
        g = [[] for _ in range(n)]
        for x, y in edges:
            g[x].append(y)
            g[y].append(x) # 建图

        def bfs(start):
            ans = inf
            dis = [-1] * n # dis[i] 表示从start到i的最短路径长度
            dis[start] = 0
            q = deque([(start, -1)])
            while q:
                x, fa = q.popleft()
                for y in g[x]:
                    if dis[y] < 0: # 第一次遇到
                        dis[y] = dis[x] + 1
                        q.append((y, x))
                    elif y != fa: # 第二次遇到
                        ans = min(ans, dis[x] + dis[y] + 1)
            return ans
        ans = min(bfs(i) for i in range(n))
        return ans if ans < inf else -1

时间复杂度:O(nm)
空间复杂度:O(n+m)

解题思路二:背诵版

class Solution:
    def findShortestCycle(self, n: int, edges: List[List[int]]) -> int:
        g = [[] for _ in range(n)]
        for u, v in edges:
            g[u].append(v)
            g[v].append(u)

        def bfs(start):
            ans = inf
            dis = [-1] * n
            q = deque([(start, -1)])
            dis[start] = 0
            while q:
                x, fa = q.popleft()
                for y in g[x]:
                    if dis[y] < 0:
                        dis[y] = dis[x] + 1
                        q.append((y, x))
                    elif y != fa:
                        ans = min(ans, dis[x] + dis[y] + 1)
            return ans

        ans = min(bfs(i) for i in range(n))
        return ans if ans < inf else -1

时间复杂度:O(nm)
空间复杂度:O(n+m)

解题思路三:


时间复杂度:O(n)
空间复杂度:O(n)


创作不易,观众老爷们请留步… 动起可爱的小手,点个赞再走呗 (๑◕ܫ←๑)
欢迎大家关注笔者,你的关注是我持续更博的最大动力


原创文章,转载告知,盗版必究



在这里插入图片描述


在这里插入图片描述
♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旋转的油纸伞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值