贪心算法求解边界最大数(拼多多2504、排列问题)
多多有两个仅由正整数构成的数列 s1 和 s2,多多可以对 s1 进行任意次操作,每次操作可以置换 s1 中任意两个数字的位置。多多想让数列 s1 构成的数字尽可能大,但是不能比数列 s2 构成的数字大。请问在经过任意次操作后,满足上述条件的数列 s1 构成的数字是多少。
s1 = 21453
s2 = 14682
输出res = 14532
### 5.2 C++解决方案
时间复杂度:
最坏情况:O(n!)
平均情况:O(n^2) 到 O(n^3)
最好情况:O(n)
空间复杂度:O(n)
#include <algorithm>
#include <iostream>
#include <string>
// 全局变量,用于存储小于 s2 的 s1 的最大排列结果
std::string max_result = "";
// 回溯函数,用于生成 s 的所有排列并找出符合条件的最大排列
void backtrack(std::string &s, int index, const std::string &s2) {
// 当 index 等于 s 的长度时,说明已经生成了一个完整的排列
if (index == s.length()) {
// 检查该排列是否小于 s2 且大于当前记录的最大排列 max_result
if (s < s2 && s > max_result) {
// 若满足条件,则更新 max_result
max_result = s;
}
return;
}
// 记录当前位置可以使用的最大字符
char max_char = s2[index];
// 尝试将 s 中 index 位置及其后面的每个位置的字符与 index 位置交换
for (int i = index; i < s.length(); ++i) {
// 剪枝 如果当前字符大于目标字符,跳过
if (s[i] > max_char)
continue;
// 交换 s[index] 和 s[i] 的位置
std::swap(s[index], s[i]);
// 剪枝 如果当前前缀小于目标前缀,继续递归
if (s.substr(0, index + 1) <= s2.substr(0, index + 1)) {
backtrack(s, index + 1, s2);
}
// 回溯操作,将字符交换回来
std::swap(s[index], s[i]);
//剪枝 如果已经找到了一个有效的排列,且当前字符等于目标字符,可以提前返回
if (!max_result.empty() && s[i] == max_char) {
break;
}
}
}
// 主函数,用于找出小于 s2 的 s1 的最大排列
int largest_less_than(const std::string &s1, const std::string &s2) {
// 检查 s1 和 s2 的长度是否相等
if (s1.length() > s2.length()) {
return -1;
}
if(s1.length() < s2.length()){
std::string s = s1;
std::sort(s.begin(), s.end(), std::greater<char>());
return stoi(s);
}
// 复制 s1 到 s 中,并对其进行降序排序
std::string s = s1;
std::sort(s.begin(), s.end(), std::greater<char>());
// 调用回溯函数开始生成排列
backtrack(s, 0, s2);
// 返回结果
return max_result.empty() ? -1 : std::stoi(max_result);
}
int main() {
// 定义示例字符串 s1
std::string s1 = "67433";
// 定义示例字符串 s2
std::string s2 = "14682";
// 调用 largest_less_than 函数得到结果
int res = largest_less_than(s1, s2);
// 输出结果
std::cout << "res = " << res << std::endl;
return 0;
}