C++:算法设计策略之动态规划法

矩阵连乘问题

一、题目描述

给定n个矩阵{A0,A1,…,An-1}, 其中Ai,i=0,…,n-1的维数为pi*pi+1,并且Ai与Ai+1是可乘的。考察这n个矩阵的连乘积A0A1…An-1,由于矩阵乘法满足结合律,所以计算矩阵的连乘可有许多不同的计算次序。矩阵连乘问题是确定计算矩阵连乘积的计算次序,使得按照这一次序计算矩阵连乘积,需要的“数乘”次数最少。

二、输入

第一行输入n的值,第二行输入n个矩阵的维数pi(i=0,…,n)。

三、输出

最少乘法次数。

四、代码

#include<iostream>
using namespace std;
#define N 20
int a[N]={0};
int m[N][N]={0};
int Matrix(int i,int j){
	int k;
	if(m[i][j]>0)
		return m[i][j];
	if(i==j)
		return 0;
	int u=Matrix(i+1,j)+a[i]*a[i+1]*a[j+1];
	for(k=i+1;k<j;k++){
		int t=Matrix(i,k)+Matrix(k+1,j)+a[i]*a[k+1]*a[j+1];
		if(t<u)
			u=t;
		
	}
	m[i][j]=u;
	return u;
}
int main(){
	int n;
	int i;
	cin>>n;
	for(i=0;i<=n;i++){
		cin>>a[i];
	}
	/*for(i=0;i<=n;i++){
		cout<<a[i]<<" ";
	}*/
	int temp=0;
	temp=Matrix(0,n-1);
	cout<<temp;
	return 0;
}
/*6
30 35 15 5 10 20 25
*/

喜欢博主的话,就点点关注啦!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不安分实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值