矩阵连乘问题
一、题目描述
给定n个矩阵{A0,A1,…,An-1}, 其中Ai,i=0,…,n-1的维数为pi*pi+1,并且Ai与Ai+1是可乘的。考察这n个矩阵的连乘积A0A1…An-1,由于矩阵乘法满足结合律,所以计算矩阵的连乘可有许多不同的计算次序。矩阵连乘问题是确定计算矩阵连乘积的计算次序,使得按照这一次序计算矩阵连乘积,需要的“数乘”次数最少。
二、输入
第一行输入n的值,第二行输入n个矩阵的维数pi(i=0,…,n)。
三、输出
最少乘法次数。
四、代码
#include<iostream>
using namespace std;
#define N 20
int a[N]={0};
int m[N][N]={0};
int Matrix(int i,int j){
int k;
if(m[i][j]>0)
return m[i][j];
if(i==j)
return 0;
int u=Matrix(i+1,j)+a[i]*a[i+1]*a[j+1];
for(k=i+1;k<j;k++){
int t=Matrix(i,k)+Matrix(k+1,j)+a[i]*a[k+1]*a[j+1];
if(t<u)
u=t;
}
m[i][j]=u;
return u;
}
int main(){
int n;
int i;
cin>>n;
for(i=0;i<=n;i++){
cin>>a[i];
}
/*for(i=0;i<=n;i++){
cout<<a[i]<<" ";
}*/
int temp=0;
temp=Matrix(0,n-1);
cout<<temp;
return 0;
}
/*6
30 35 15 5 10 20 25
*/
喜欢博主的话,就点点关注啦!!!