C++ 贪心问题、区间分组(含问题分析与代码)

题目 AcWing906.区间分组

原题链接

描述

给定 N N N 个闭区间 [ a i , b i ] [ai,bi] [ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。

输出最小组数。

输入

第一行包含整数 N N N,表示区间数。

接下来 N N N​ 行,每行包含两个整数 a i , b i ai,bi ai,bi,表示一个区间的两个端点。

输出

输出一个整数,表示最小组数。

数据范围

1 ≤ N ≤ 1 0 5 1≤N≤10^{5} 1N105
− 1 0 9 ≤ a i ≤ b i ≤ 1 0 9 −10^{9}≤ai≤bi≤10^{9} 109aibi109

样例输入

3
-1 1
2 4
3 5

样例输出

2

思路

这道题用到一个很重要的数据结构priority_queue,需要包含头文件<queue>。优先队列具有队列的所有特性,包括队列的基本操作,只是在这基础上添加了内部的一个排序,它本质是一个实现的。

优先权队列有以下基本操作:

  • top 访问队头元素
  • empty 队列是否为空
  • size 返回队列内元素个数
  • push 插入元素到队尾 (并排序)
  • emplace 原地构造一个元素并插入队列
  • pop 弹出队头元素
  • swap 交换内容

定义:priority_queue<Type, Container, Functional> heap;

Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式。当需要用自定义的数据类型时才需要传入这三个参数,使用基本数据类型时,只需要传入数据类型,默认是大顶堆。一般定义方式为:

1 //升序队列,小顶堆
2 priority_queue <int, vector<int>, greater<int>> heap;
3 //降序队列,大顶堆
4 priority_queue <int, vector<int>, less<int>> heap;

本道题的贪心准则:按照区间左端点从小到大排序。

struct Range
{
    int l, r;
    bool operator<(const Range& R)const
    {
        return l < R.l;
    }
}range[N];

核心代码分析

我们按左端点从小到大遍历,再将每个区间的左端点 range[i].l与每一组的最右端点的最小值 heap.top()比较:
heap.top() >= range[i].lheap为空,则说明没有一组集合可以包含该区间,因此建立新的分组 heap.push(range[i].r)
heap.top() < range[i].l,说明有分组可以包含该区间,我们默认把该区间加入到第一个分组中(第一个分组的右端点值较小,这样可以使每个分组包含尽量多的区间),然后从 heap中弹出第一个分组的右端点值,并用 range[i].r更新第一个分组的右端点。

代码

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;

const int N = 1e5 + 10;
struct Range
{
    int l, r;
    bool operator<(const Range& R)const
    {
        return l < R.l;
    }
}range[N];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
        scanf("%d%d", &range[i].l, &range[i].r);    
    sort(range, range + n);//将区间数组按左端点从小到大排序    
    int res = 0;
    //定义小根堆,用来存放每一组区间的最右端点
    priority_queue<int, vector<int>, greater<int>> heap;
    for (int i = 0; i < n; i++)
    {
        if (heap.empty() || heap.top() >= range[i].l)
        {
            res++;//建立新的分组
            heap.push(range[i].r);
        }
        else
        {
            //弹出第一组右端点的值并更新
            heap.pop();
            heap.push(range[i].r);
        }
    }
    printf("%d", res);
    return 0;
}

欢迎交流与指正~

<think>好的,我现在需要帮助用户找到用C++实现分组问题算法代码,特别是涉及小团体、约束条件以及最小化不稳定度的情况。首先,我得理解用户的具体需求。分组问题有很多种类型,比如图的分割、聚类分析、任务分配等,而用户提到“小团体”可能指的是社交网络中的社区发现,或者将一组人分成多个小组,每个小组内部满足某些约束条件,同时希望某种不稳定性指标最小化。 接下来,我需要确定用户提到的“不稳定度”具体指什么。通常,这可能涉及到组内成员之间的差异,比如能力值、兴趣差异等。例如,在分组时,希望每个小组内成员的能力差异尽可能小,这样整体不稳定性最低。另外,约束条件可能包括每个小组的人数限制、必须包某些成员,或者某些成员不能在同一组等。 然后,我需要考虑如何用C++实现这样的算法。可能的算法包括贪心算法、动态规划、回溯算法或者启发式算法如遗传算法、模拟退火等,具体取决于问题规模和约束复杂度。如果问题规模较大,可能需要高效的近似算法;如果规模较小,精确算法可能更合适。 用户提供的引用中提到了现有库的重要性,比如引用[1]提到应尽量使用现有库来解决子任务。因此,我需要考虑是否有C++的库可以处理类似的分组问题,或者是否需要从头实现。例如,Boost库中的图算法可能对社区检测有帮助,或者使用线性代数库处理矩阵运算。 接下来,我需要构建一个示例问题。假设要将n个人分成k组,每组有最小和最大人数限制,同时最小化组内成员分数的方差(作为不稳定度的度量)。这种情况下,可以将问题建模为优化问题,使用整数规划或启发式方法解决。 然后,考虑如何用C++实现一个简单的贪心算法。例如,按分数排序后,依次分配人员到各组,确保人数限制,并尽量保持组内分数相近。或者使用回溯法尝试所有可能的分组,找到最优解,但这在n较大时不可行。 另外,用户可能希望代码结构清晰,包约束处理和不稳定度计算的部分。需要定义数据结构来存储人员信息、分组结果,以及计算不稳定度的函数。 可能遇到的问题包括如何处理复杂的约束条件,以及算法效率。例如,如果存在必须分在同一组的约束,可以在预处理时将这些人合并;如果存在不能同组的约束,则需要在分配时检查。 最后,根据用户提供的引用,特别是引用[1]中提到的重用现有库,我需要建议用户查看是否有相关C++库可用,如MLPack、Dlib等,这些库可能包聚类算法,如k-means,层次聚类等,可以适应分组问题。如果现有库不满足需求,再考虑自行实现算法。 总结步骤: 1. 明确问题定义:分组的具体约束、不稳定度的计算方式。 2. 确定算法选择:根据问题规模和复杂度选择合适的算法。 3. 利用现有库:检查C++是否有相关库可用。 4. 编写示例代码:实现一个基本的分组算法,处理简单约束和优化目标。 5. 测试和优化:确保算法正确性,并优化性能。</think>以下是用C++实现分组问题的思路和示例代码框架,针对小团体划分、约束条件和最小化不稳定度的需求: ### 问题建模 假设需要将$n$个学生分到$k$个小组,要求: 1. 每组人数在$[min_size, max_size]$区间 2. 某些学生必须同组(硬约束) 3. 最小化组内分数方差(不稳定度) ### 算法实现步骤 1. 预处理强制同组约束 2. 使用贪心算法进行初始分组 3. 应用模拟退火优化分组结果 ```cpp #include <vector> #include <algorithm> #include <cmath> #include <random> struct Student { int id; double score; std::vector<int> must_group_with; // 必须同组的成员ID }; class GroupingSystem { private: std::vector<Student> students; int min_size, max_size; // 计算组内方差 double calculate_variance(const std::vector<Student>& group) { double sum = 0, mean = 0; for (auto& s : group) sum += s.score; mean = sum / group.size(); double var = 0; for (auto& s : group) var += pow(s.score - mean, 2); return var; } public: GroupingSystem(std::vector<Student> input, int min_s, int max_s) : students(input), min_size(min_s), max_size(max_s) {} // 模拟退火优化 std::vector<std::vector<Student>> optimize() { // 实现状态生成、能量计算、状态转移 // 返回最优分组方案 } // 基础分组算法 std::vector<std::vector<Student>> basic_grouping() { // 1. 预处理必须同组的约束 std::vector<std::vector<int>> merged_groups; std::vector<bool> visited(students.size(), false); // 合并强制同组约束(示例实现) for (int i = 0; i < students.size(); ++i) { if (!visited[i]) { std::vector<int> new_group; // 深度优先搜索合并关联成员 dfs_merge(i, visited, new_group); merged_groups.push_back(new_group); } } // 2. 贪心分组算法(示例) std::vector<std::vector<Student>> groups; // 按合并后的组进行分配,考虑人数约束... return groups; } void dfs_merge(int idx, std::vector<bool>& visited, std::vector<int>& group) { visited[idx] = true; group.push_back(idx); for (auto& partner : students[idx].must_group_with) { if (!visited[partner]) { dfs_merge(partner, visited, group); } } } }; ``` ### 关键实现技术 1. **约束处理**:通过DFS合并强制同组约束 2. **目标优化**:使用模拟退火算法进行全局优化,可设置能量函数为总方差之和 3. **分组策略**:基于合并后的组进行二次分配,保证人数限制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值