一、介绍
1 .One-Hot Encoding
One-Hot编码,又称为一位有效编码,主要是采用N 位状态寄存器来对N 个状态进行编码,每个状态都由他独立的寄存器位,并且在任何时候只有一位有效。
在实际的机器学习的应用任务中,特征有时候并不总是连续值,有可能是一些分类值,如性别可分为 “male” 和 “female” 。在机器学习任务中,对于这样的特征,通常我们需要对其进行特征数字化,如下面的例子:
有如下三个特征属性:
- 性别:[“male”,“female”]
- 地区:[“Europe”,“US”,“Asia”]
- 浏览器:[“Firefox”,“Chrome”,“Safari”,“Internet Explorer”]
对于某一个样本,如[“male”,“US”,“Internet Explorer”],我们需要将这个分类值的特征数字化,最直接的方法,我们可以采用序列化的方式:[0,1,3]。但是这样的特征处理并不能直接放入机器学习算法中。
2. One-Hot Encoding的处理方法
对于上述的问题,性别的属性是二维的,同理,地区是三维的,浏览器则是四维的,这样,我们可以采用One-Hot编码的方式对上述的样本[“male”,“US”,“Internet Explorer”]编码,“male”则对应着[1,0],同理“US”对应着[0,1,0],“Internet Explorer”对应着[0,0,0,1]。则完整的特征数字化的结果为:[1,0,0,1,0,0,0,0,1]。这样导致的一个结果就是数据会变得非常的稀疏。
二、实现方法
1.pandas之get_dummies方法
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)
该方法可以讲类别变量转换成新增的虚拟变量/指示变量。
参数说明:
1.data : array-like, Series, or DataFrame
输入的数据
2.prefix : string, list of strings, or dict of strings, default None
get_dummies转换后,列名的前缀
3.columns : list-like, default None
指定需要实现类别转换的列名
4.dummy_na : bool, default False
增加一列表示空缺值,如果False就忽略空缺值
5.drop_first : bool, default False
获得k中的k-1个类别值,去除第一个
实验:
import pandas as pd
df=pd.DataFrame({'A':['a','b','a'],'B':['b','a','c'],'C':[1,2,3]})
print(df)
df1=pd.get_dummies(df,prefix=['col1','col2'])
print(df1)
2.sklearn
from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) # fit来学习编码
array=enc.transform([[0, 1, 3]]).toarray() # 进行编码
print(array)
输出结果:[[1. 0. 0. 1. 0. 0. 0. 0. 1.]]
数据矩阵是4*3,即4个数据,3个特征维度。
矩阵:
[
[0,0,3],
[1,1,0],
[0,2,1],
[1,0,2]
]
- 第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01
- 第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001
- 第三列为第三个特征维度,有四种取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001
三、为什么使用one-hot编码来处理离散型特征?
正如上文所言,独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。
为什么特征向量要映射到欧式空间?
将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
四、独热编码优缺点
- 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
- 缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。
五、什么情况下(不)用独热编码?
- 用:独热编码用来解决类别型数据的离散值问题
- 不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。 Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
总的来说,要是one-hot encoding的类别数目不太多,建议优先考虑。
六、什么情况下(不)需要归一化?
- 需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
- 不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。
七、one-hot编码为什么可以解决类别型数据的离散值问题?
首先,one-hot编码是N位状态寄存器为N个状态进行编码的方式
eg:高、中、低不可分,用0 0 0 三位编码之后变得可分了,并且成为互相独立的事件
类似 SVM中,原本线性不可分的特征,经过project之后到高维之后变得可分了
GBDT处理高维稀疏矩阵的时候效果并不好,即使是低维的稀疏矩阵也未必比SVM好
八、Tree Model不太需要one-hot编码
对于决策树来说,one-hot的本质是增加树的深度
tree-model是在动态的过程中生成类似 One-Hot + Feature Crossing 的机制
- 一个特征或者多个特征最终转换成一个叶子节点作为编码 ,one-hot可以理解成三个独立事件
- 决策树是没有特征大小的概念的,只有特征处于他分布的哪一部分的概念
one-hot可以解决线性可分问题 但是比不上label encoding - one-hot降维后的缺点: 降维前可以交叉的降维后可能变得不能交叉