Jumping Cows(dp)

本文介绍了一道动态规划问题,通过给定的一系列药剂(每种药剂具有不同的强度),目标是在遵循特定规则下,确定如何使用这些药剂以达到最大的跳跃效果。奇数天服用增加跳跃力的药剂,偶数天则服用减少跳跃力的药剂。文章详细解释了使用二维动态规划解决问题的方法,并提供了完整的代码实现。
摘要由CSDN通过智能技术生成

【问题】

Farmer John’s cows would like to jump over the moon, just like the cows in their favorite nursery rhyme. Unfortunately, cows can not jump.
The local witch doctor has mixed up P (1 <= P <= 150,000) potions to aid the cows in their quest to jump. These potions must be administered exactly in the order they were created, though some may be skipped.
Each potion has a ‘strength’ (1 <= strength <= 500) that enhances the cows’ jumping ability. Taking a potion during an odd time step increases the cows’ jump; taking a potion during an even time step decreases the jump. Before taking any potions the cows’ jumping ability is, of course, 0.
No potion can be taken twice, and once the cow has begun taking potions, one potion must be taken during each time step, starting at time 1. One or more potions may be skipped in each turn.
Determine which potions to take to get the highest jump.

【输入】

Line 1: A single integer, P
Lines 2…P+1: Each line contains a single integer that is the strength of a potion. Line 2 gives the strength of the first potion; line 3 gives the strength of the second potion; and so on.

【输出】

Line 1: A single integer that is the maximum possible jump.

【思路】

题意:给出每天力量数,单数天加力量,双数天减力量,问怎样力量最大
二维dp,dp[i][0]表示已经吃奇数个药,dp[i][1]表示已经吃偶数个药,一遍dp然后找最大值就行
具体看代码吧

【源代码】

#include<iostream>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
using namespace std;
#include<stack>
#include<cstdlib>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<algorithm>
#include<map>
#define ll long long
int dp[160000][2];
//int a[160000];
int main()
{
    int n,maxx,t;
    while(scanf("%d",&n)!=EOF)
    {
        dp[0][0] = 0;
    dp[0][1] = 0;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&t);
        dp[i][0] = max(dp[i-1][0],dp[i-1][1]-t);
        dp[i][1] = max(dp[i-1][1],dp[i-1][0]+t);
    }
    maxx = max(dp[n][0],dp[n][1]);
    printf("%d\n",maxx);
    }
    return 0;
}
马尔科夫跳跃神经网络(Markovian Jumping Neural Networks, MJNNs)是一种结合了马尔科夫过程和人工神经网络的技术,常用于处理具有随机状态切换的数据,如时间序列预测和模式识别等。在MATLAB中,有许多库和工具箱可以支持MJNN的开发,如Neural Network Toolbox。 以下是一个简单的MATLAB代码示例,展示如何创建一个基本的马尔科夫跳跃神经网络模型: ```matlab % 导入所需库 addpath('toolbox/MJNetToolbox') % 假设MJNetToolbox已经安装 % 创建神经网络结构 numInputs = 10; % 输入特征数 hiddenNodes = [5, 3]; % 隐藏层节点数 numOutputs = 1; % 输出节点数 net = newMJNetwork(numInputs, hiddenNodes, numOutputs); % 设置马尔可夫转移矩阵和初始状态分布 T = randi([1, 3], 3, 3); % 生成一个3x3的随机马尔可夫矩阵,表示状态之间的概率转移 pi = ones(1, 3) / 3; % 初始状态均匀分布 % 训练网络 inputs = ... % 输入数据 targets = ... % 目标数据 net = train(net, inputs, targets, 'TransitionMatrix', T, 'InitialStateDistribution', pi); % 测试网络 testInputs = ... % 测试数据 outputs = predict(net, testInputs); ``` 请注意,这只是一个非常基础的框架,并未包括完整的训练循环和评估步骤。实际使用中,你需要提供适当的数据、调整网络参数并可能利用一些优化技术。此外,`newMJNetwork`, `train`, 和 `predict` 这些函数在真实环境中需要替换为对应的MJNetToolbox函数或自定义函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅梦曾倾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值